Skip to main content
Log in

Nanoparticle-based theranostics in nuclear medicine

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Nuclear medicine has revolutionized medical diagnostic and therapeutic interventions by employing radiopharmaceuticals for detection and treatment. However, the limited selectivity and efficacy of traditional radiopharmaceuticals call for novel approaches to enhance the precision and therapeutic potential of nuclear medicine. Application of nanoparticle-mediated radiopharmaceuticals in treatment and diagnostics (theranostics) integrates imaging and therapeutic modalities into a single nanoscale platform to address these challenges and open new insights. This review study comprehensively explores the recent improvements in nanoparticle-based theranostics for nuclear medicine applications. In this regard, the fundamentals of nuclear medicine and the significance of combining imaging and therapy are introduced. Moreover, in this context, we evaluated the challenges of nanoparticle-based theranostics, especially from the viewpoint of toxicity and immunogenicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the article.

References

  1. Saha GB (2018) Fundamentals of Nuclear Pharmacy, 7th edn. Springer, New York

    Book  Google Scholar 

  2. O’Malley JP, Ziessman HA (2020) Nuclear medicine and molecular imaging: the requisites e-book. Elsevier Health Sciences, Edinburgh

    Google Scholar 

  3. https://www.nibib.nih.gov/science-education/science-topics/nuclear-medicine.

  4. Prakash D, Tafti D (2022) Nuclear medicine computed tomography physics. StatPearls Publishing, Florida

    Google Scholar 

  5. Salih S, Alkatheeri A, Alomaim W, Elliyanti A (2022) Radiopharmaceutical treatments for cancer therapy, radionuclides characteristics, applications, and challenges. Molecules 27(16):5231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Marengo M, Martin CJ, Rubow S, Sera T, Amador Z, Torres L (2022) Radiation safety and accidental radiation exposures in nuclear medicine. Seminars in Nuclear Medicine. Elsevier, Amsterdam

    Google Scholar 

  7. Djekidel M, Govindarajan KK (2022) Nuclear Medicine Pediatric Assessment, Protocols, and interpretation. StatPearls Publishing, Florida

    Google Scholar 

  8. Lauri C, Signore A, Glaudemans AW, Treglia G, Gheysens O, Slart RH et al (2022) Evidence-based guideline of the European association of nuclear medicine (EANM) on imaging infection in vascular grafts. Eur J Nucl Med Mol Imaging 49(10):3430–3451

    Article  PubMed  PubMed Central  Google Scholar 

  9. Foster A, Nigam S, Tatum DS, Raphael I, Xu J, Kumar R et al (2021) Novel theranostic agent for PET imaging and targeted radiopharmaceutical therapy of tumour-infiltrating immune cells in glioma. EBioMedicine. 71:103571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hertz B, Greenspan BS (2022) Present and future of target therapies and theranostics: refining traditions and exploring new frontiers. Eur J Nucl Med Mol Imaging 49(11):3613–3621

    Google Scholar 

  11. Joseph TM, Kar Mahapatra D, Esmaeili A, Piszczyk Ł, Hasanin MS, Kattali M et al (2023) Nanoparticles: taking a unique position in medicine. Nanomaterials 13(3):574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ray SS, Bandyopadhyay J (2021) Nanotechnology-enabled biomedical engineering: current trends, future scopes, and perspectives. Nanotechnol Rev 10(1):728–743

    Article  CAS  Google Scholar 

  13. Chen F, Ehlerding EB, Cai W (2014) Theranostic nanoparticles. J Nucl Med 55(12):1919–1922

    Article  CAS  PubMed  Google Scholar 

  14. Din FU, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S et al (2017) Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int j nanomed 12:7291–7309

    Article  Google Scholar 

  15. Sharma S, Zvyagin AV, Roy I (2021) Theranostic applications of nanoparticle-mediated photoactivated therapies. J Nanotheranostics 2(3):131–156

    Article  Google Scholar 

  16. Ryu JH, Lee S, Son S, Kim SH, Leary JF, Choi K et al (2014) Theranostic nanoparticles for future personalized medicine. J Control Release 190:477–484

    Article  CAS  PubMed  Google Scholar 

  17. Kelkar SS, Reineke TM (2011) Theranostics: combining imaging and therapy. Bioconjug Chem 22(10):1879–1903

    Article  CAS  PubMed  Google Scholar 

  18. Nirmala MJ, Kizhuveetil U, Johnson A, Balaji G, Nagarajan R, Muthuvijayan V (2023) Cancer nanomedicine: a review of nano-therapeutics and challenges ahead. RSC Adv 13(13):8606–8629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nakhaei P, Margiana R, Bokov DO, Abdelbasset WK, Jadidi Kouhbanani MA, Varma RS et al (2021) Liposomes: structure, biomedical applications, and stability parameters with emphasis on cholesterol. Front Bioeng Biotechnol 9:705886

    Article  PubMed  PubMed Central  Google Scholar 

  20. Umar AK, Wathoni N, Zothantluanga JH, Das S, Luckanagul JA (2022) Liposome-polymer complex for drug delivery system and vaccine stabilization. Heliyon. https://doi.org/10.1016/j.heliyon.2022.e08934

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liu P, Chen G, Zhang J (2022) A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules 27(4):1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang L, Chan JM, Gu FX, Rhee J-W, Wang AZ, Radovic-Moreno AF et al (2008) Self-assembled lipid−polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano 2(8):1696–1702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Choi CHJ, Alabi CA, Webster P, Davis ME (2010) Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc Natl Acad Sci 107(3):1235–1240

    Article  CAS  PubMed  Google Scholar 

  24. Shin DH, Tam YT, Kwon GS (2016) Polymeric micelle nanocarriers in cancer research. Front Chem Sci Eng 10:348–359

    Article  CAS  Google Scholar 

  25. Mustafai A, Zubair M, Hussain A, Ullah A (2023) Recent progress in proteins-based micelles as drug delivery carriers. Polymers 15(4):836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Torchilin VP (2007) Targeted pharmaceutical nanocarriers for cancer therapy and imaging. The AAPS journa 9(2):128–147

    Article  Google Scholar 

  27. Peltek OO, Muslimov AR, Zyuzin MV, Timin AS (2019) Current outlook on radionuclide delivery systems: from design consideration to translation into clinics. J nanobiotechnol 17:1–34

    Article  Google Scholar 

  28. Liu M, Wang L, Lo Y, Shiu SC-C, Kinghorn AB, Tanner JA (2022) Aptamer-enabled nanomaterials for therapeutics, drug targeting and imaging. Cells 11(1):159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Menjoge AR, Kannan RM, Tomalia DA (2010) Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today 15(5–6):171–185

    Article  CAS  PubMed  Google Scholar 

  30. Svenson S, Tomalia DA (2012) Dendrimers in biomedical applications—reflections on the field. Adv Drug Deliv Rev 64:102–115

    Article  Google Scholar 

  31. Crintea A, Motofelea AC, Șovrea AS, Constantin A-M, Crivii C-B, Carpa R et al (2023) Dendrimers: advancements and potential applications in cancer diagnosis and treatment—an overview. Pharmaceutics 15(5):1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shi X, Wang S, Meshinchi S, Van Antwerp ME, Bi X, Lee I et al (2007) Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and imaging. Small 3(7):1245–1252

    Article  CAS  PubMed  Google Scholar 

  33. Conte M, De Feo MS, Sidrak MMA, Corica F, Gorica J, Filippi L et al (2023) Radiolabeled dendrimer coated nanoparticles for radionuclide imaging and therapy: a systematic review. Pharmaceutics 15(3):867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhao L, Zhu M, Li Y, Xing Y, Zhao J (2017) Radiolabeled dendrimers for nuclear medicine applications. Molecules 22(9):1350

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ealia SAM, Saravanakumar MP, editors. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP conference series: materials science and engineering; 2017: IOP Publishing.

  36. Abeer MM, Rewatkar P, Qu Z, Talekar M, Kleitz F, Schmid R et al (2020) Silica nanoparticles: a promising platform for enhanced oral delivery of macromolecules. J Control Release 326:544–555

    Article  CAS  PubMed  Google Scholar 

  37. Bhatti R, Shakeel H, Malik K, Qasim M, Khan MA, Ahmed N et al (2022) Inorganic nanoparticles: toxic effects, mechanisms of cytotoxicity and phytochemical interactions. Adv Pharm Bull 12(4):757

    CAS  PubMed  Google Scholar 

  38. Silva F, Campello MPC, Paulo A (2020) Radiolabeled gold nanoparticles for imaging and therapy of cancer. Materials 14(1):4

    Article  PubMed  PubMed Central  Google Scholar 

  39. Farzin A, Etesami SA, Quint J, Memic A, Tamayol A (2020) Magnetic nanoparticles in cancer therapy and diagnosis. Adv Healthcare Mater 9(9):1901058

    Article  CAS  Google Scholar 

  40. Castillo RR, Lozano D, Vallet-Regí M (2020) Mesoporous silica nanoparticles as carriers for therapeutic biomolecules. Pharmaceutics 12(5):432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hosseinkazemi H, Samani S, O’Neill A, Soezi M, Moghoofei M, Azhdari MH et al (2022) Applications of iron oxide nanoparticles against breast cancer. J Nanomater 2022:1–12

    Article  Google Scholar 

  42. Masumoto Y, Takagahara T (2013) Semiconductor quantum dots: physics, spectroscopy and applications. Springer Science & Business Media, Berlin

    Google Scholar 

  43. Jokerst JV, Gambhir SS (2011) Molecular imaging with theranostic nanoparticles. Acc Chem Res 44(10):1050–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR (2016) Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res 33:2373–2387

    Article  CAS  PubMed  Google Scholar 

  45. Shende P, Gandhi S (2021) Current strategies of radiopharmaceuticals in theranostic applications. J Drug Deliv Sci Technol 64:102594

    Article  CAS  Google Scholar 

  46. Siafaka PI, Okur NÜ, Karantas ID, Okur ME, Gündoğdu EA (2021) Current update on nanoplatforms as therapeutic and diagnostic tools: a review for the materials used as nanotheranostics and imaging modalities. Asian J Pharm Sci 16(1):24–46

    Article  PubMed  Google Scholar 

  47. Goel S, England CG, Chen F, Cai W (2017) Positron emission tomography and nanotechnology: a dynamic duo for cancer theranostics. Adv Drug Deliv Rev 113:157–176

    Article  CAS  PubMed  Google Scholar 

  48. Schütz MB, Renner AM, Ilyas S, Lê K, Guliyev M, Krapf P et al (2021) 18 F-Labeled magnetic nanovectors for bimodal cellular imaging. Biomater Sci 9(13):4717–4727

    Article  PubMed  Google Scholar 

  49. Jeong HJ, Yoo RJ, Kim JK, Kim MH, Park SH, Kim H et al (2019) Macrophage cell tracking PET imaging using mesoporous silica nanoparticles via in vivo bioorthogonal F-18 labeling. Biomaterials 199:32–39

    Article  CAS  PubMed  Google Scholar 

  50. Pontico M, Conte M, Petronella F, Frantellizzi V, De Feo MS, Di Luzio D et al (2023) 18F-fluorodeoxyglucose (18F-FDG) functionalized gold nanoparticles (GNPs) for Plasmonic Photothermal ablation of cancer: a review. Pharmaceutics 15(2):319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Belderbos S, González-Gómez MA, Cleeren F, Wouters J, Piñeiro Y, Deroose CM et al (2020) Simultaneous in vivo PET/MRI using fluorine-18 labeled Fe3O4@ Al (OH) 3 nanoparticles: comparison of nanoparticle and nanoparticle-labeled stem cell distribution. EJNMMI Res 10(1):1–13

    Article  Google Scholar 

  52. Man F, Gawne PJ, de Rosales RT (2019) Nuclear imaging of liposomal drug delivery systems: a critical review of radiolabelling methods and applications in nanomedicine. Adv Drug Deliv Rev 143:134–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhou H, Zhang Q, Cheng Y, Xiang L, Shen G, Wu X et al (2020) 64Cu-labeled melanin nanoparticles for PET/CT and radionuclide therapy of tumor. Nanomed Nanotechnol Biol Med 29:102248

    Article  CAS  Google Scholar 

  54. Ma W, Fu F, Zhu J, Huang R, Zhu Y, Liu Z et al (2018) 64 Cu-Labeled multifunctional dendrimers for targeted tumor PET imaging. Nanoscale 10(13):6113–6124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Blanc-Béguin F, Eliès P, Robin P, Tripier R, Kervarec N, Lemarié CA et al (2021) 68 Ga-labelled carbon nanoparticles for ventilation PET/CT imaging: physical properties study and comparison with technegas®. Mol Imag Biol 23:62–69

    Article  Google Scholar 

  56. Almasi T, Gholipour N, Akhlaghi M, Mokhtari Kheirabadi A, Mazidi SM, Hosseini SH et al (2021) Development of Ga-68 radiolabeled DOTA functionalized and acetylated PAMAM dendrimer-coated iron oxide nanoparticles as PET/MR dual-modal imaging agent. Int J Polym Mater Polym Biomater 70(15):1077–1089

    Article  CAS  Google Scholar 

  57. Lyra M (2009) Single photon emission tomography (SPECT) and 3D images evaluation in nuclear medicine. InTech, Vienna

    Book  Google Scholar 

  58. Ahmadi M, Emzhik M, Mosayebnia M (2023) Nanoparticles labeled with gamma-emitting radioisotopes: an attractive approach for in vivo tracking using SPECT imaging. Drug Deliv Transl Res 13(6):1546–1583

    Article  CAS  PubMed  Google Scholar 

  59. Mushtaq S, Bibi A, Park JE, Jeon J (2021) Recent progress in technetium-99m-labeled nanoparticles for molecular imaging and cancer therapy. Nanomaterials 11(11):3022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ng QK, Olariu CI, Yaffee M, Taelman VF, Marincek N, Krause T et al (2014) Indium-111 labeled gold nanoparticles for in-vivo molecular targeting. Biomaterials 35(25):7050–7057

    Article  PubMed  Google Scholar 

  61. Lepareur N, Lacœuille F, Bouvry C, Hindré F, Garcion E, Chérel M et al (2019) Rhenium-188 labeled radiopharmaceuticals: current clinical applications in oncology and promising perspectives. Front Med 6:132

    Article  Google Scholar 

  62. Petriev V, Tischenko V, Mikhailovskaya A, Popov A, Tselikov G, Zelepukin I et al (2019) Nuclear nanomedicine using Si nanoparticles as safe and effective carriers of 188Re radionuclide for cancer therapy. Sci Rep 9(1):2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Frantellizzi V, Verrina V, Raso C, Pontico M, Petronella F, Bertana V et al (2022) 99mTc-labeled keratin gold-nanoparticles in a nephron-like microfluidic chip for photo-thermal therapy applications. Mater Today Adv 16:100286

    Article  CAS  Google Scholar 

  64. Rokka J, Snellman A, Kaasalainen M, Salonen J, Zona C, La Ferla B et al (2016) 18F-labeling syntheses and preclinical evaluation of functionalized nanoliposomes for Alzheimer’s disease. Eur J Pharm Sci 88:257–266

    Article  CAS  PubMed  Google Scholar 

  65. Guerrero S, Herance JR, Rojas S, Mena JF, Gispert JD, Acosta GA et al (2012) Synthesis and in vivo evaluation of the biodistribution of a 18F-labeled conjugate gold-nanoparticle-peptide with potential biomedical application. Bioconjug Chem 23(3):399–408

    Article  CAS  PubMed  Google Scholar 

  66. Lee H, Gaddy D, Ventura M, Bernards N, de Souza R, Kirpotin D et al (2018) Companion diagnostic 64Cu-liposome positron emission tomography enables characterization of drug delivery to tumors and predicts response to cancer nanomedicines. Theranostics 8(9):2300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Clausen AS, Østergaard DE, Holmberg P, Henriksen JR, Tham J, Damborg PP et al (2020) Quantitative determination of 64Cu-liposome accumulation at inflammatory and infectious sites: potential for future theranostic system. J Control Release 327:737–746

    Article  CAS  PubMed  Google Scholar 

  68. Zhao Y, Sultan D, Detering L, Cho S, Sun G, Pierce R et al (2014) Copper-64-alloyed gold nanoparticles for cancer imaging: improved radiolabel stability and diagnostic accuracy. Angew Chem 126(1):160–163

    Article  Google Scholar 

  69. Zhao Y, Pang B, Detering L, Luehmann H, Yang M, Black K et al (2018) Melanocortin 1 receptor targeted imaging of melanoma with gold nanocages and positron emission tomography. Mol Imaging 17:1536012118775827

    Article  PubMed  PubMed Central  Google Scholar 

  70. Chilug LE, Leonte RA, Patrascu MEB, Ion AC, Tuta CS, Raicu A et al (2017) In vitro binding kinetics study of gold nanoparticles functionalized with 68 Ga-DOTA conjugated peptides. J Radioanal Nucl Chem 311:1485–1493

    Article  CAS  Google Scholar 

  71. Pretze M, Hien A, Rädle M, Schirrmacher R, Wängler C, Br W (2018) Gastrin-releasing peptide receptor-and prostate-specific membrane antigen-specific ultrasmall gold nanoparticles for characterization and diagnosis of prostate carcinoma via fluorescence imaging. Bioconj Chem 29(5):1525–1533

    Article  CAS  Google Scholar 

  72. Goins B, Bao A, Phillips WT (2017) Techniques for loading technetium-99m and rhenium-186/188 radionuclides into preformed liposomes for diagnostic imaging and radionuclide therapy. Liposomes Methods Protoc 1522:155–178

    Article  CAS  Google Scholar 

  73. Li Y, Zhao L, Xu X, Sun N, Qiao W, Xing Y et al (2019) Design of 99m Tc-labeled low generation dendrimer-entrapped gold nanoparticles for targeted single photon emission computed tomography/computed tomography imaging of gliomas. J Biomed Nanotechnol 15(6):1201–1212

    Article  CAS  PubMed  Google Scholar 

  74. Sakr TM, El-Hashash M, El-Mohty A, Essa BM (2020) 99mTc-gallic-gold nanoparticles as a new imaging platform for tumor targeting. Appl Radiat Isot 164:109269

    Article  CAS  PubMed  Google Scholar 

  75. Black KC, Akers WJ, Sudlow G, Xu B, Laforest R, Achilefu S (2015) Dual-radiolabeled nanoparticle SPECT probes for bioimaging. Nanoscale 7(2):440–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Song L, Falzone N, Vallis KA (2016) EGF-coated gold nanoparticles provide an efficient nano-scale delivery system for the molecular radiotherapy of EGFR-positive cancer. Int J Radiat Biol 92(11):716–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Xie J, Lee S, Chen X (2010) Nanoparticle-based theranostic agents. Adv Drug Deliv Rev 62(11):1064–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang M, Xie Z, Long H, Ren K, Hou L, Wang Y et al (2022) Current advances in the imaging of atherosclerotic vulnerable plaque using nanoparticles. Mater Today Bio 14:100236

    Article  PubMed  PubMed Central  Google Scholar 

  79. Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L (2016) Nanoparticle-mediated brain drug delivery: overcoming blood–brain barrier to treat neurodegenerative diseases. J Control Release 235:34–47

    Article  CAS  PubMed  Google Scholar 

  80. Lin X, Wang Y, Fang K, Guo Z, Lin N, Li L (2023) The application of nanoparticles in theranostic systems targeting breast cancer stem cells: current progress and future challenges. Stem Cell Res Ther 14(1):356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Abbasi R, Shineh G, Mobaraki M, Doughty S, Tayebi L (2023) Structural parameters of nanoparticles affecting their toxicity for biomedical applications: a review. J Nanopart Res 25(3):43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shang L, Nienhaus K, Nienhaus GU (2014) Engineered nanoparticles interacting with cells: size matters. Journal of nanobiotechnology 12(1):1–11

    Article  Google Scholar 

  83. Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle–cell interactions. Small 6(1):12–21

    Article  CAS  PubMed  Google Scholar 

  84. Sadauskas E, Wallin H, Stoltenberg M, Vogel U, Doering P, Larsen A et al (2007) Kupffer cells are central in the removal of nanoparticles from the organism. Part Fibre Toxicol 4(1):1–7

    Article  Google Scholar 

  85. Choi HS, Ashitate Y, Lee JH, Kim SH, Matsui A, Insin N et al (2010) Rapid translocation of nanoparticles from the lung airspaces to the body. Nat Biotechnol 28(12):1300–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li M, Al-Jamal KT, Kostarelos K, Reineke J (2010) Physiologically based pharmacokinetic modeling of nanoparticles. ACS Nano 4(11):6303–6317

    Article  CAS  PubMed  Google Scholar 

  87. Zhang L, Gu F, Chan J, Wang A, Langer R, Farokhzad O (2008) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83(5):761–769

    Article  CAS  PubMed  Google Scholar 

  88. Hua S, De Matos MB, Metselaar JM, Storm G (2018) Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front Pharmacol 9:790

    Article  PubMed  PubMed Central  Google Scholar 

  89. Gupta R, Xie H (2018) Nanoparticles in daily life: applications, toxicity and regulations. J Environ Pathol Toxic Oncol 37(3):209–230

    Article  Google Scholar 

  90. Elumalai K, Srinivasan S, Shanmugam A (2024) Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment. Biomed Technol 5:109–122

    Article  CAS  Google Scholar 

  91. Moghaddam FD, Zare EN, Hassanpour M, Bertani FR, Serajian A, Ziaei SF et al (2024) Chitosan-based nanosystems for cancer diagnosis and therapy: stimuli-responsive, immune response, and clinical studies. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2024.121839

    Article  PubMed  Google Scholar 

  92. Irvine DJ, Hanson MC, Rakhra K, Tokatlian T (2015) Synthetic nanoparticles for vaccines and immunotherapy. Chem Rev 115(19):11109–11146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Szebeni J, Storm G (2015) Complement activation as a bioequivalence issue relevant to the development of generic liposomes and other nanoparticulate drugs. Biochem Biophys Res Commun 468(3):490–497

    Article  CAS  PubMed  Google Scholar 

  94. Sainz V, Conniot J, Matos AI, Peres C, Zupanǒiǒ E, Moura L et al (2015) Regulatory aspects on nanomedicines. Biochem Biophys Res Commun 468(3):504–510

    Article  CAS  PubMed  Google Scholar 

  95. Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y et al (2020) Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci 7:193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Beltrán-Gracia E, López-Camacho A, Higuera-Ciapara I, Velázquez-Fernández JB, Vallejo-Cardona AA (2019) Nanomedicine review: clinical developments in liposomal applications. Cancer Nanotechnol 10(1):1–40

    Article  Google Scholar 

  97. Muthu MS, Leong DT, Mei L, Feng S-S (2014) Nanotheranostics˗ application and further development of nanomedicine strategies for advanced theranostics. Theranostics 4(6):660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bumcrot D, Manoharan M, Koteliansky V, Sah DW (2006) RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat Chem Biol 2(12):711–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zwanenburg A, Vallières M, Abdalah MA, Aerts HJ, Andrearczyk V, Apte A et al (2020) The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295(2):328–338

    Article  PubMed  Google Scholar 

  100. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M et al (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88

    Article  PubMed  Google Scholar 

  101. Nensa F, Demircioglu A, Rischpler C (2019) Artificial intelligence in nuclear medicine. J Nucl Med 60(Supplement 2):29S-37S

    Article  PubMed  Google Scholar 

  102. Weber WA, Czernin J, Anderson CJ, Badawi RD, Barthel H, Bengel F et al (2020) The future of nuclear medicine, molecular imaging, and theranostics. J Nucl Med 61(Supplement 2):263S-S272

    Article  PubMed  Google Scholar 

  103. Liu Y, Chen Z, Liu C, Yu D, Lu Z, Zhang N (2011) Gadolinium-loaded polymeric nanoparticles modified with Anti-VEGF as multifunctional MRI contrast agents for the diagnosis of liver cancer. Biomaterials 32(22):5167–5176

    Article  CAS  PubMed  Google Scholar 

  104. Zhang X-D, Wu D, Shen X, Liu P-X, Yang N, Zhao B et al (2011) Size-dependent in vivo toxicity of PEG-coated gold nanoparticles. Int j nanomed 6:2071–81

    Article  CAS  Google Scholar 

Download references

Acknowledgements

N/A.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Alawadi.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uinarni, H., Kadhum, W.R., Saleh, R.O. et al. Nanoparticle-based theranostics in nuclear medicine. J Radioanal Nucl Chem 333, 1661–1672 (2024). https://doi.org/10.1007/s10967-024-09432-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-024-09432-7

Keywords

Navigation