Skip to main content

Therapeutic/Theranostic Use of Radionanomedicine

  • Chapter
  • First Online:
Radionanomedicine

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Radionanomedicine is a newly emerged field of medicine extending nuclear medicine by means of nanomaterial technology and platforms. Radionanomedicine utilizes versatility of nanoparticles (NP) and avoids inherent toxic effect of NPs. This is mainly due to the fact that NPs are used in trace amounts for targeting. The therapeutic effect of radionanomedicine comes from ionizing radiation of labeled radionuclides. The core concept of radionanomedicine depends on both characteristics of radionuclides and properties of NPs. The characteristics of NPs including multifunctionality, intrinsic properties are exploited to enhance the therapeutic effect of radiolabeled NPs. In addition, various strategies have been developed to deliver sufficient amount of radiolabeled NPs, such as local administration and co-application of thermal stimuli. In an attempt to improve the therapeutic effect of radionuclides, several approaches have been investigated, such as utilizing intrinsic radioactive properties of NPs or labeling with alpha emitters. The emergence of radionanomedicine is expected to restore of the essence of nuclear medicine as well as to enhance the clinical applicability of nanomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.S. Lee, H.J. Im, Y.S. Lee, Radionanomedicine: widened perspectives of molecular theragnosis. Nanomedicine 11(4), 795–810 (2015)

    Article  Google Scholar 

  2. V.E. Kagan, H. Bayir, A.A. Shvedova, Nanomedicine and nanotoxicology: two sides of the same coin. Nanomedicine 1(4), 313–316 (2005)

    Article  Google Scholar 

  3. M.C. Garnett, P. Kallinteri, Nanomedicines and nanotoxicology: some physiological principles. Occup. Med. (Lond.) 56(5), 307–311 (2006)

    Article  Google Scholar 

  4. M.A. Maurer-Jones, K.C. Bantz, S.A. Love, B.J. Marquis, C.L. Haynes, Toxicity of therapeutic nanoparticles. Nanomedicine (Lond.) 4(2), 219–241 (2009)

    Article  Google Scholar 

  5. D. Rajon, W.E. Bolch, R.W. Howell, Survival of tumor and normal cells upon targeting with electron-emitting radionuclides. Med. Phys. 40, 014101 (2013)

    Article  Google Scholar 

  6. K.M. Prise, G. Schettino, M. Folkard, K.D. Held, New insights on cell death from radiation exposure. Lancet. Oncol. 6, 520–528 (2005)

    Article  Google Scholar 

  7. J.P. Pouget, I. Navarro-Teulon, M. Bardiès, N. Chouin, G. Cartron, A. Pèlegrin et al., Clinical radioimmunotherapy–the role of radiobiology. Nat. Rev. Clin. Oncol. 8(12), 720–734 (2011)

    Article  Google Scholar 

  8. M.C. Hernandez, S.J. Knox, Radiobiology of radioimmunotherapy: targeting CD20 B-cell antigen in non-Hodgkin’s lymphoma. Int. J. Radiation Oncol. Biol. Phys. 59, 1274–1287 (2004)

    Article  Google Scholar 

  9. C. LA Friesen, J. Kotzerke, I. Buchmann, S.N. Reske, K.M. Debatin, Beta-irradiation used for systemic radioimmunotherapy induces apoptosis and activates apoptosis pathways in leukaemia cells. Eur. J. Nucl. Med. Mol. Imaging 30, 1251–1261 (2003)

    Article  Google Scholar 

  10. D.E. Milenic, E.D. Brady, M.W. Brechbiel, Antibody-targeted radiation cancer therapy. Nat. Rev. Drug Discov. 3, 488–499 (2004)

    Article  Google Scholar 

  11. J.P. Pouget, S.J. Mather, General aspects of the cellular response to low- and high-LET radiation. Eur. J. Nucl. Med. 28(4), 541–561 (2001)

    Article  Google Scholar 

  12. G. Sgouros, J.C. Roeske, M.R. McDevitt, S. Palm, B.J. Allen, D.R. Fisher et al., MIRD Pamphlet No. 22 (abridged): radiobiology and dosimetry of alpha-particle emitters for targeted radionuclide therapy. J. Nucl. Med. 51(2), 311–328 (2010)

    Article  Google Scholar 

  13. G. Ferro-Flores, B.E. Ocampo-García, C.L. Santos-Cuevas, E. Morales-Avila, E. Azorín-Vega, Multifunctional radiolabeled nanoparticles for targeted therapy. Curr. Med. Chem. 21(1), 124–138 (2014)

    Article  Google Scholar 

  14. A. Soundararajan, G.D. Dodd 3rd, A. Bao, W.T. Phillips, L.M. McManus, T.J. Prihoda et al., Chemoradionuclide therapy with 186Re-labeled liposomal doxorubicin in combination with radiofrequency ablation for effective treatment of head and neck cancer in a nude rat tumor xenograft model. Radiology 261, 813–823 (2011)

    Article  Google Scholar 

  15. D.V.S. Pissuwan, M.B. Cortie, Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends Biotechnol. 24, 62–67 (2006)

    Article  Google Scholar 

  16. R.M. Sharkey, D.M. Goldenberg, Novel radioimmunopharmaceuticals for cancer imaging and therapy. Curr. Opin. Investig. Drugs 9, 1302–1316 (2008)

    Google Scholar 

  17. P. Cherukuri, E.S. Glazer, S.A. Curley, Targeted hyperthermia using metal nanoparticles. Adv. Drug Del. Rev. 62, 339–345 (2010)

    Article  Google Scholar 

  18. A. Vilchis-Juárez, G. Ferro-Flores, C. Santos-Cuevas, E. Morales-Avila, B. Ocampo-García, L. Díaz-Nieto et al., Molecular targeting radiotherapy with cyclo-RGDFK(C) peptides conjugated to 177Lu-labeled gold nanoparticles in tumor-bearing mice. J. Biomed. Nanotechnol. 10(3), 393–404 (2014)

    Article  Google Scholar 

  19. M. de Visser, W.M. van Weerden, C.M. de Ridder, S. Reneman, M. Melis, E.P. Krenning et al., Androgen-dependent expression of the gastrin-releasing peptide receptor in human prostate tumor xenografts. J. Nucl. Med. 48(1), 88–93 (2007)

    Google Scholar 

  20. N. Jiménez-Mancilla, G. Ferro-Flores, C. Santos-Cuevas, B. Ocampo-García, M. Luna-Gutiérrez, E. Azorín-Vega et al., Multifunctional targeted therapy system based on 99mTc/177Lu-labeled gold nanoparticles-Tat(49-57)-Lys(3) -bombesin internalized in nuclei of prostate cancer cells. J. Label. Comp. Radiopharm. 56(13), 663–671 (2013)

    Article  Google Scholar 

  21. N. Bertrand, J. Wu, X. Xu, N. Kamaly, O.C. Farokhzad, Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 66, 2–25 (2014)

    Article  Google Scholar 

  22. H. Maeda, Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv. Drug Deliv. Rev. 91, 3–6 (2015)

    Article  Google Scholar 

  23. H. Maeda, J. Wu, T. Sawa, Y. Matsumura, K. Hori, Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control Release. 65, 271–284 (2000)

    Article  Google Scholar 

  24. M.D. Shultz, J.D. Wilson, C.E. Fuller, J. Zhang, H.C. Dorn, P.P. Fatouros, Metallofullerene-based nanoplatform for brain tumor brachytherapy and longitudinal imaging in a murine orthotopic xenograft model. Radiology 261(1), 136–143 (2011)

    Article  Google Scholar 

  25. H. Xie, B. Goins, A. Bao, Z.J. Wang, W.T. Phillips, Effect of intratumoral administration on biodistribution of 64Cu-labeled nanoshells. Int. J. Nanomed. 7, 2227–2238 (2012)

    Article  Google Scholar 

  26. J.T. French, B. Goins, M. Saenz, S. Li, X. Garcia-Rojas, W.T. Phillips et al., Interventional therapy of head and neck cancer with lipid nanoparticle-carried rhenium 186 radionuclide. J. Vasc. Interv. Radiol. 21, 1271–1279 (2010)

    Article  Google Scholar 

  27. W.T. Phillips, B. Goins, A. Bao, D. Vargas, J.E. Guttierez, A. Trevino et al., Rhenium-186 liposomes as convection-enhanced nanoparticle brachytherapy for treatment of glioblastoma. Neuro. Oncol. 14, 416–425 (2012)

    Article  Google Scholar 

  28. S. Yook, Z. Cai, Y. Lu, M.A. Winnik, J.P. Pignol, R.M. Reilly, Radiation nanomedicine for EGFR-positive breast cancer: panitumumab-modified gold nanoparticles complexed to the β-particle-emitter, 177Lu. Mol. Pharm. 12(11), 3963–3972 (2015)

    Article  Google Scholar 

  29. S. Yook, Z. Cai, Y. Lu, M.A. Winnik, J.P. Pignol, R.M. Reilly, Intratumorally injected 177Lu-labeled gold nanoparticles: Gold nanoseed brachytherapy with application for neoadjuvant treatment of locally advanced breast cancer. J. Nucl. Med. 57(6), 936–942 (2016)

    Article  Google Scholar 

  30. M.K. Khan, L.D. Minc, S.S. Nigavekar, M.S. Kariapper, B.M. Nair, M. Schipper et al., Fabrication of 198Au0 radioactive composite nanodevices and their use for nanobrachytherapy. Nanomedicine 4(1), 57–69 (2008)

    Article  Google Scholar 

  31. N. Chanda, P. Kan, L.D. Watkinson, R. Shukla, A. Zambre, T.L. Carmack et al., Radioactive gold nanoparticles in cancer therapy: therapeutic efficacy studies of GA-198AuNP nanoconstruct in prostate tumor-bearing mice. Nanomedicine 6(2), 201–209 (2010)

    Article  Google Scholar 

  32. R. Shukla, N. Chanda, A. Zambre, A. Upendran, K. Katti, R.R. Kulkarni et al., Laminin receptor specific therapeutic gold nanoparticles (198AuNP-EGCg) show efficacy in treating prostate cancer. Proc. Natl. Acad. Sci. U.S.A. 109(31), 12426–12431 (2012)

    Article  ADS  Google Scholar 

  33. D. Cordier, F. Forrer, F. Bruchertseifer, A. Morgenstern, C. Apostolidis, S. Good et al., Targeted alpha-radionuclide therapy of functionally critically located gliomas with 213Bi-DOTA-[Thi8, Met(O2)11]-substance P: a pilot trial. Eur. J. Nucl. Med. Mol. Imaging 37(7), 1335–1344 (2010)

    Article  Google Scholar 

  34. R.M. de Kruijff, H.T. Wolterbeek, A.G. Denkova, A critical review of alpha radionuclide therapy-how to deal with recoiling daughters? Pharmaceuticals Basel. 8(2), 321–336 (2015)

    Article  Google Scholar 

  35. M.R. McDevitt, D. Ma, J. Simon, R.K. Frank, D.A. Scheinberg, Design and synthesis of 225Ac radioimmunopharmaceuticals. Appl. Radiat. Isot. 57, 841–847 (2002)

    Article  Google Scholar 

  36. L.L. Chappell, K.A. Deal, E. Dadachova, M.W. Brechbiel, Synthesis, conjugation, and radiolabeling of a novel bifunctional chelating agent for 225Ac. Radioimmunotherapy applications. Bioconjug. Chem. 11, 510–519 (2000)

    Article  Google Scholar 

  37. M.F. McLaughlin, J. Woodward, R.A. Boll, J.S. Wall, A.J. Rondinone, S.J. Kennel et al., Gold coated lanthanide phosphate nanoparticles for targeted alpha generator radiotherapy. PLoS One 8(1), e54531 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to So Won Oh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oh, S.W., Lee, D.S. (2018). Therapeutic/Theranostic Use of Radionanomedicine. In: Lee, D. (eds) Radionanomedicine. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-67720-0_23

Download citation

Publish with us

Policies and ethics