Skip to main content
Log in

Gamma radiation induced modification in metal–organic framework: a case study

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In the present manuscript, we report the synthesis of Zn-BDC MOF using a modified solvothermal method. As synthesized Zn-BDC MOF is exposed to gamma (γ) radiation doses, the dose exposure is between 0 and 50 kGy. It is observed that γ radiations are probably absorbed by zinc metal, and due to adsorption of γ the structure of the MOF is not changing, which suggests that the MOF structure regains its structural stability at higher γ radiation doses. Further, for the first time, we reported that the stability of Zn-BDC MOF is up to 35 kGy, it has been observed that, there is an irradiation effect on the higher porosity of MOF. The present findings strongly suggest the radiation-sensitive nature of Zn-BDC MOF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cook TR, Zheng Y-R, Stang PJ (2012) Metal–organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal–organic materials. Chem Rev 113(1):734–777

    Article  PubMed  PubMed Central  Google Scholar 

  2. Safdar Ali R, Meng H, Li Z (2021) Zinc-based metal-organic frameworks in drug delivery, cell imaging, and sensing. Molecules 27(1):100. https://doi.org/10.3390/molecules27010100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Farha OK et al (2012) Metal–organic framework materials with ultrahigh surface areas: is the sky the limit? J Am Chem Soc 134(36):15016–15021

    Article  CAS  PubMed  Google Scholar 

  4. Fang Z et al (2014) Structural complexity in metal–organic frameworks: Simultaneous modification of open metal sites and hierarchical porosity by systematic doping with defective linkers. J Am Chem Soc 136(27):9627–9636

    Article  CAS  PubMed  Google Scholar 

  5. Zheng F et al (2019) Advanced electrocatalysts based on metal–organic frameworks. ACS Omega 5(6):2495–2502. https://doi.org/10.1021/acsomega.9b03295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Park KS et al (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci 103(27):10186–10191

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Senthil Raja D et al (2016) Synthesis of mixed ligand and pillared paddlewheel mofs using waste polyethylene terephthalate material as sustainable ligand source. Microporous Mesoporous Mater 231:186–191

    Article  CAS  Google Scholar 

  8. Abdelkareem MA et al (2022) High-performance effective metal–organic frameworks for electrochemical applications. J Sci Adv Mater Devices 7(3):100465

    Article  CAS  Google Scholar 

  9. Aamer I et al (2021) Synthesis, characterization and co2 adsorption studies of DABCO based pillared Zn-BDC and Co-BDC metal organic frameworks. Mater Res Express 8(7):075506. https://doi.org/10.1088/2053-1591/ac14ff

    Article  ADS  CAS  Google Scholar 

  10. More MS et al (2023) Metal–organic framework-reduced graphene oxide (Zn-BDC@rGO) composite for selective discrimination among ammonia, carbon monoxide, and sulfur dioxide. Appl Phys A 129(12):828. https://doi.org/10.1007/s00339-023-07103-0

    Article  ADS  CAS  Google Scholar 

  11. Qazvini OT, Babarao R, Telfer SG (2021) Selective capture of carbon dioxide from hydrocarbons using a metal-organic framework. Nat Commun 12(1):197. https://doi.org/10.1038/s41467-020-20489-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pettinari C, Tombesi A (2020) Metal–organic frameworks for carbon dioxide capture. MRS Energy Sustain 7(1):E35. https://doi.org/10.1557/mre.2020.30

    Article  Google Scholar 

  13. Jiao L et al (2019) Metal–organic frameworks: structures and functional applications. Mater Today 27:43–68

    Article  CAS  Google Scholar 

  14. Masoomi MY et al (2019) Mixed-metal mofs: unique opportunities in metal–organic framework (MOF) functionality and design. AngewandteChemie 131(43):15330–15347

    ADS  Google Scholar 

  15. Zhou G, Wang Y, Huang Z (2022) Structure and function tailored metal-organic frameworks for heterogeneous catalysis. Chem Catalysis 2(12):3304–3319

    Article  CAS  Google Scholar 

  16. Kirlikovali KO et al (2022) Back to the basics: developing advanced metal–organic frameworks using fundamental chemistry concepts. ACS Nanoscience Au 3(1):37–45

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lu Z et al (2020) Node-accessible zirconium mofs. J Am Chem Soc 142(50):21110–21121

    Article  CAS  PubMed  Google Scholar 

  18. Wang Y et al (2021) NH2-uio-66 coated with two-dimensional covalent organic frameworks: high stability and photocatalytic activity. ACS Appl Mater Interfaces 13(25):29916–29925

    Article  CAS  PubMed  Google Scholar 

  19. Chen T et al (2022) In situ synthesis of MOF-74 family for high areal energy density of aqueous nickel–zinc batteries. Adv Mater 34(30):2201779

    Article  CAS  Google Scholar 

  20. Cheng Y et al (2022) Advances in metal–organic framework-based membranes. Chem Soc Rev 51(19):8300–8350

    Article  CAS  PubMed  Google Scholar 

  21. Zou M, Dong M, Zhao T (2022) Advances in metal-organic frameworks MIL-101(CR). Int J Mol Sci 23(16):9396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu Z et al (2017) A battery-supercapacitor hybrid device composed of metallic zinc, a biodegradable ionic liquid electrolyte and graphite. J Solid State Electrochem 22(1):91–101

    Article  ADS  Google Scholar 

  23. Samuel MS et al (2018) A GO-CS@MOF [zn(bdc)(dmf)] material for the adsorption of chromium(vi) ions from aqueous solution. Compos B Eng 152:116–125

    Article  CAS  Google Scholar 

  24. Volkringer C et al (2016) Stability of metal–organic frameworks under Gamma irradiation. Chem Commun 52(84):12502–12505

    Article  CAS  Google Scholar 

  25. Pu X et al (2021) Preparation and carbonization of metal organic framework Zn(BDC)(Ted)0.5 for enhancing moisture resistance and methane storage capacity. Ind Eng Chem Res 60(10):3809–3818

    Article  CAS  Google Scholar 

  26. Rosales-Vázquez LD et al (2020) Structure of a luminescent MOF-2 derivative with a core of zn(ii)-terephthalate-isoquinoline and its application in sensing of xylenes. Crystals 10(5):344

    Article  Google Scholar 

  27. Stock N, Biswas S (2011) Synthesis of metal-organic frameworks (mofs): routes to various MOF topologies, morphologies, and composites. Chem Rev 112(2):933–969

    Article  PubMed  Google Scholar 

  28. Dutta R, Rao MN, Kumar A (2019) Investigation of ionic liquid interaction with znbdc-metal organic framework through scanning EXAFS and inelastic neutron scattering. Sci Rep 9(1):147

    Article  Google Scholar 

  29. de Assis SGF et al (2019) Design of new europium-doped luminescent mofs for UV radiation dosimetric sensing. J Solid State Chem 276:309–318

    Article  ADS  Google Scholar 

  30. Fiaz M et al (2020) Synthesis of efficient TMS@MOF-5 catalysts for oxygen evolution reaction. Catal Lett 150(9):2648–2659

    Article  CAS  Google Scholar 

  31. Trung LG et al (2023) Highly efficient degradation of reactive black KN-B dye by ultraviolet light responsive zif-8 photocatalysts with different morphologies. RSC Adv 13(9):5908–5924

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Arabbaghi EK et al (2021) Zn-MOF: an efficient drug delivery platform for the encapsulation and releasing of Imatinib Mesylate. J Porous Mater 28(2):641–649

    Article  CAS  Google Scholar 

  33. Isherwood LH et al (2021) Gamma radiation-induced oxidation, doping, and etching of two-dimensional MOS2 crystals. J Phys Chem C 125(7):4211–4222

    Article  CAS  Google Scholar 

  34. Elsherbiny AS et al (2023) Efficiency and selectivity of cost-effective Zn-MOF for dye removal, kinetic and thermodynamic approach. Environ Sci Pollut Res

  35. Ma C et al (2022) Effects of high gamma doses on the structural stability of metal–organic frameworks. Langmuir 38(29):8928–8933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would also like to thank Fergusson College (Autonomous), Pune, and Savitribai Phule Pune University for their kind financial assistance and support throughout the experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sadhu K. Kolekar or Kailash B. Sapnar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mane, S.N., Kolekar, S.K., Sapnar, K.B. et al. Gamma radiation induced modification in metal–organic framework: a case study. J Radioanal Nucl Chem (2024). https://doi.org/10.1007/s10967-024-09430-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10967-024-09430-9

Keywords

Navigation