Skip to main content
Log in

Safety assessment in the disposal of high-level radioactive wastes (HLWs): a geochemical study of uranium complexes in deep groundwater in granites from Beishan, China

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

To clarify the species of uranium and its effect on the safety assessment in the disposal of high-level radioactive wastes (HLWs), we presented geochemical simulations of Beishan deep groundwater in Gansu Province, China. The Ca–UO2–CO3 complexes are the main species. They can decrease the blocking of granites on uranium, which is unfavorable for the long-term and safe disposal of HLWs. The Ca2+ may become the critical factor that determines the uranium species when the formation of Ca2UO2(CO3)3(aq) increases with Ca2+ concentrations. Our study provides an important basis and reference for future safety assessment in the geological disposal of HLWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang J (2014) On area-specific underground research laboratory for geological disposal of high-level radioactive waste in China. J Rock Mech Rock Eng 6(2):99–104

    Article  CAS  Google Scholar 

  2. McCartin T, Tadesse R, Li J, Umeki H, Bilbao y Leon S, Palos G, (2020) Management and disposal of high-level radioactive waste: Global progress and solutions. Organisation for Economic Co-Operation and Development, Geneva

    Google Scholar 

  3. Ojovan MI, Steinmetz HJ (2022) Approaches to disposal of nuclear waste. Energies 15(20):7804

    Article  CAS  Google Scholar 

  4. Silva RJ (1991) Mechanisms for the retardation of uranium (VI) migration. MRS Online Proc Library (OPL) 257:323–330

    Article  Google Scholar 

  5. Dozol M, Hagemann R (1993) Radionuclide migration in groundwaters: review of the behaviour of actinides (technical report). Pure Appl Chem 65(5):1081–1102

    Article  CAS  Google Scholar 

  6. Monte L, Brittain JE, Håkanson L, Smith JT, Perk MVD (2004) Review and assessment of models for predicting the migration of radionuclides from catchments. J Environ Radioact 75(1):83–103

    Article  CAS  PubMed  Google Scholar 

  7. Putyrskaya V, Klemt E (2007) Modeling 137Cs migration processes in lake sediments. J Environ Radioact 96(1–3):54–62

    Article  CAS  PubMed  Google Scholar 

  8. Ferroni L, Miracapillo C (2014) Radionuclides migration in the far field of geological repositories: a numerical example. Energy Procedia 45:691–700

    Article  CAS  Google Scholar 

  9. Testoni R, Levizzari RD, Salve MD (2020) Transport dynamic of strontium in groundwater: safety assessment study. Prog Nucl Energy 119:103179

    Article  CAS  Google Scholar 

  10. Baqer Y, Bateman K, Tan V, Stewart DI, Chen X, Thornton SF (2021) The influence of hyper-alkaline leachate on a generic host rock composition for a nuclear waste repository: experimental assessment and modelling of novel variable porosity and surface area. Transp Porous Media 140(2):559–580

    Article  CAS  Google Scholar 

  11. Mei H, Aoyagi N, Saito T, Kozai N, Sugiura Y, Tachi Y (2022) Uranium(VI) sorption on illite under varying carbonate concentrations: Batch experiments, modeling, and cryogenic time-resolved laser fluorescence spectroscopy study. Appl Geochem 136:105178

    Article  CAS  Google Scholar 

  12. Smedley PL, Kinniburgh DG (2023) Uranium in natural waters and the environment: distribution, speciation and impact. Appl Geochem 148:105534

    Article  CAS  Google Scholar 

  13. Bachmaf S, Planer-Friedrich B, Merkel BJ (2008) Effect of sulfate, carbonate, and phosphate on the uranium (VI) sorption behavior onto bentonite. Radiochim Acta 96(6):359–366

    Article  CAS  Google Scholar 

  14. Vercouter T, Vitorge P, Amekraz B, Moulin C (2008) Stoichiometries and thermodynamic stabilities for aqueous sulfate complexes of U(VI). Inorg Chem 47(6):2180–2189

    Article  CAS  PubMed  Google Scholar 

  15. Bernhard G, Geipel G, Brendler V, Nitsche H (1996) Speciation of uranium in seepage waters of a mine tailing pile studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS). Radiochim Acta 74(S1):87–92

    Article  CAS  Google Scholar 

  16. Montoya V, Noseck U, Mattick F, Britz S, Blechschmidt I, Schäfer T (2022) Radionuclide geochemistry evolution in the long-term in-situ test (LIT) at grimsel test site (Switzerland). J Hazard Mater 424:127733

    Article  CAS  PubMed  Google Scholar 

  17. Dong W, Brooks SC (2006) Determination of the formation constants of ternary complexes of uranyl and carbonate with alkaline earth metals (Mg2+, Ca2+, Sr2+, and Ba2+) using anion exchange method. Environ Sci Technol 40(15):4689–4695

    Article  CAS  PubMed  Google Scholar 

  18. Endrizzi F, Rao L (2014) Chemical speciation of uranium(VI) in marine environments: complexation of calcium and magnesium Ions with [(UO2)(CO3)3]4− and the effect on the extraction of uranium from seawater. Chem Eur J 20(44):14499–14506

    Article  CAS  PubMed  Google Scholar 

  19. Baik MH, Jung EC, Jeong J (2015) Determination of uranium concentration and speciation in natural granitic groundwater using TRLFS. J Radioanal Nucl Chem 305(2):589–598

    Article  CAS  Google Scholar 

  20. Payne TE, Waite TD (2022) Uranium adsorption - a review of progress from qualitative understanding to advanced model development. Radiochim Acta 110(6–9):549–559

    Article  CAS  Google Scholar 

  21. Ma JX, Zhang YM, Collins RN, Tsarev S, Aoyagi N, Kinsela AS, Jones AM, Waite TD (2019) Flow-electrode CDI removes the uncharged Ca-UO2-CO3 ternary complex from brackish potable groundwater: complex dissociation, transport, and sorption. Environ Sci Technol 53(5):2739–2747

    Article  CAS  PubMed  Google Scholar 

  22. Norrström AC, Löv Å (2014) Uranium theoretical speciation for drinking water from private drilled wells in Sweden-Implications for choice of removal method. Appl Geochem 51:148–154

    Article  Google Scholar 

  23. Lopez AM, Wells A, Fendorf S (2020) Soil and aquifer properties combine as predictors of groundwater uranium concentrations within the Central Valley. California Environ Sci Technol 55(1):352–361

    Article  PubMed  Google Scholar 

  24. Tian QS, Wang P, Huang YX, Zhang B, Jiao WT (2022) The Stability of U (VI) and As (V) under the Influence of pH and Inorganic Ligands. Sustainability 14(20):12967

    Article  CAS  Google Scholar 

  25. Zhou WQ, Xian DF, Su XB (2020) Macroscopic and spectroscopic characterization of U (VI) sorption on biotite. Chemosphere 255:126942

    Article  CAS  PubMed  Google Scholar 

  26. Tinnacher RM, Bhattacharyya A, Huang P, Massey M, Tournassat C, Fox PM, Nico PS, Whittaker M, Caporuscio F, Rock M, Sauer K, Holmboe M (2023) Effects of mineral impurities and heat on Uranium(VI) sorption onto bentonite (Final Report). United States.

  27. Ruiz-Fresneda MA, Martinez-Moreno MF, Povedano-Priego C, Morales-Hidalgo M, Jroundi F, Merroun ML (2023) Impact of microbial processes on the safety of deep geological repositories for radioactive waste. Front Microbiol 14:1134078

    Article  PubMed  PubMed Central  Google Scholar 

  28. Reiller PE, Vercouter T, Duro L, Ekberg C (2012) Thermodynamic data provided through the FUNMIG project: analyses and prospective. Appl Geochem 27(2):414–426

    Article  CAS  Google Scholar 

  29. Bernhard G, Geipel G, Brendler V, Nitsche H (1998) Uranium speciation in waters of different uranium mining areas. J Alloys Compd 271:201–205

    Article  Google Scholar 

  30. Bernhard G, Geipel G, Reich T, Brendler V, Amayri S, Nitsche H (2001) Uranyl(VI) carbonate complex formation, validation of the Ca2UO2(CO3)3(aq) species. Radiochim Acta 89(8):511–518

    Article  CAS  Google Scholar 

  31. Prat O, Vercouter T, Ansoborlo E, Fichet P, Perret P, Kurttio P, Salonen L (2009) Uranium speciation in drinking water from drilled wells in southern Finland and its potential links to health effects. Environ Sci Technol 43(10):3941–3946

    Article  CAS  PubMed  Google Scholar 

  32. Ryu JH, Koh YK, Park SW, Kim GY, Choi JW (2012) Geochemical characterization of deep groundwater in KURT using geochemical modeling. J Environ Eng 138(3):351–359

    Article  CAS  Google Scholar 

  33. Wang XY, Shi ZM, Kinniburgh DG, Zhao LS, Ni SJ, Wang RL, Hou Y, Cheng K, Zhu BC (2019) Effect of thermodynamic database selection on the estimated aqueous uranium speciation. J Geochem Explor 204:33–42

    Article  CAS  Google Scholar 

  34. Wang J, Chen L, Su R, Zhou ZC, Zhao XG, Tian X, Ji RL, Ma HS (2023) Beishan underground research laboratory for geological disposal of high level radioactive waste in China-update 2023. World Nucl Geosci 40(S1):473–490 ((in Chinese))

    Google Scholar 

  35. Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water-Resour Invest Rep (US Geol Surv) 99(4259):312

    Google Scholar 

  36. Parkhurst DL, Appelo CAJ (2013) Description of input and examples for PHREEQC version 3—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. In: U. S. Geological Survey Techniques and Methods. U.S. Geological Survey, book 6, chap A43, pp 497. Denver, Colorado.

  37. Kinniburgh DG, Cooper DM (2004) Predominance and mineral stability diagrams revisited. Environ Sci Technol 38(13):3641–3648

    Article  CAS  PubMed  Google Scholar 

  38. Xiao F, Wang J, Guo YH, Wang ZM, Su R (2011) Progress of hydrogeological studies in Beishan preselected area of disposal repository for high level radioactive waste in China. Uranium Geol 27(03):185–192 ((in Chinese))

    CAS  Google Scholar 

  39. Wang J, Chen L, Su R, Zhao XG (2018) The Beishan underground research laboratory for geological disposal of high-level radioactive waste in China: planning, site selection, site characterization and in situ tests. J Rock Mech Rock Eng 10(3):411–435

    Article  CAS  Google Scholar 

  40. Zhou ZC, Wang J, Su R, Guo YH, Li JB, Zhao J, Zhang M, Ji RL, Li YN (2023) Formation mechanism of deep groundwater at the Xinchang site of high-level radioactive waste geological disposal in China. J Radioanal Nucl Chem 332(4):897–905

    Article  CAS  Google Scholar 

  41. Yang GZ, Kang ML, Cheng X, Ma Y, Liu Y, Li JB, Wang J (2019) A novel methodology for investigating the redox potential of underground water in China’s Beishan HLW repository site. J Radioanal Nucl Chem 322(2):923–932

    Article  CAS  Google Scholar 

  42. Li NN (2018) Experiment and simulation study on water-rock reaction between GMZ Na-bentonite and Beishan groundwater. Beijing Research Institute of Uranium Geology, Beijing (in Chinese)

  43. Guo YH, Wang J, Liu SF, Su R, Lu CH (2004) Groundwater chemical characteristics of the Yemaquan section—the preselected area for China’s high-level radioactive waste repository. At Energy Sci Technol 38(S1):143 ((in Chinese ))

    Google Scholar 

  44. Wang J (2004) Ten year progress in geological disposal of high-level radioactive waste in China. China Atomic Energy Press, Beijing ((in Chinese))

    Google Scholar 

  45. Grenthe I, Gaona X, Rao L, Plyasunov A, Runde W, Grambow B, Konings R, Smith A, Moore E (2020) Second update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium. Chemical thermodynamics volume 14 (No. NEA--7500). OECD, Paris.

  46. Giffaut E, Grivé M, Blanc P, Vieillard P, Colàs E, Gailhanou H, Gaboreau S, Marty N, Madé B, Duro L (2014) Andra thermodynamic database for performance assessment. ThermoChimie Appl Geochem 49:225–236

    Article  CAS  Google Scholar 

  47. Guillaumont R, Mompean FJ (2003) Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium (Vol 5: 64–70). Elsevier, Amsterdam

    Google Scholar 

  48. Kalmykov SN, Choppin GR (2000) Mixed Ca2+/UO22+/CO32-complex formation at different ionic strengths. Radiochim Acta 88(9–11):603–608

    Article  CAS  Google Scholar 

  49. Lee JY, Yun JI (2013) Formation of ternary CaUO2(CO3)32− and Ca2UO2(CO3)3(aq) complexes under neutral to weakly alkaline conditions. Dalton Trans 42(27):9862–9869

    Article  CAS  PubMed  Google Scholar 

  50. Altmaier M, Gaona X, Fanghänel T (2013) Recent advances in aqueous actinide chemistry and thermodynamics. Chem Rev 113(2):901–943

    Article  CAS  PubMed  Google Scholar 

  51. Gascoyne M (2004) Hydrogeochemistry, groundwater ages and sources of salts in a granitic batholith on the Canadian Shield, southeastern Manitoba. Appl Geochem 19(4):519–560

    Article  CAS  Google Scholar 

  52. Kelly SD, Kemner KM, Brooks SC, Fredrickson JK, Carroll SL, Kennedy DW, Zachara JM, Plymale AE, Fendorf S (2005) Ca-UO2-CO3 complexation–implications for bioremediation of U(VI). Phys Scr T115:915

    Article  CAS  Google Scholar 

  53. Stanley DM, Wilkin RT (2019) Solution equilibria of uranyl minerals: Role of the common groundwater ions calcium and carbonate. J Hazard Mater 377:315–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ranville JF, Hendry MJ, Reszat TN, Xie Q, Honeyman BD (2007) Quantifying uranium complexation by groundwater dissolved organic carbon using asymmetrical flow field-flow fractionation. J Contam Hydrol 91(3–4):233–246

    Article  CAS  PubMed  Google Scholar 

  55. Zheng ZP, Tokunaga TK, Wan JM (2003) Influence of calcium carbonate on U(VI) sorption to soils. Environ Sci Technol 37(24):5603–5608

    Article  CAS  PubMed  Google Scholar 

  56. Thoenen T, Hummel W, Berner U, Curti E (2014) The PSI/Nagra chemical thermodynamic database 12/07. Nuclear Energy and Safety Research Department Laboratory for Waste Management (LES). Paul Scherrer Institut, Villigen PSI, Switzerland.

  57. Richter A, Bok F, Brendler V (2015) Data compilation and evaluation for U(IV) and U (VI) for the thermodynamic reference database THEREDA. Helmholtz-Zentrum Dresden-Rossendorf.

  58. Tournassat C, Tinnacher RM, Grangeon S, Davis JA (2018) Modeling uranium (VI) adsorption onto montmorillonite under varying carbonate concentrations: a surface complexation model accounting for the spillover effect on surface potential. Geochim Cosmochim Acta 220:291–308

    Article  CAS  Google Scholar 

  59. Dong W, Ball WP, Liu C, Wang Z, Stone AT, Bai J, Zachara JM (2005) Influence of calcite and dissolved calcium on uranium (VI) sorption to a Hanford subsurface sediment. Environ Sci Technol 39(20):7949–7955

    Article  CAS  PubMed  Google Scholar 

  60. Chen P, Ma Y, Kang ML, Shang CM, Song Y, Xu FQ, Wang J, Song G, Yang YQ (2020) The redox behavior of uranium on Beishan granite: Effect of Fe2+ and Fe3+ content. J Environ Radioact 217:106208

    Article  CAS  PubMed  Google Scholar 

  61. Zou Y, Zheng C, Sheikhi S (2021) Role of ion exchange in the brine-rock interaction systems: a detailed geochemical modeling study. Chem Geol 559:119992

    Article  CAS  Google Scholar 

  62. Fan QH, Hao LM, Wang CL, Zheng Z, Liu CL, Wu WS (2014) The adsorption behavior of U (VI) on granite. Environ Sci: Processes Impacts 16(3):534–541

    CAS  Google Scholar 

  63. Geng RY, Wang W, Din Z, Luo DX, He BH, Zhang WT, Liang JJ, Li P, Fan QH (2020) Exploring sorption behaviors of Se(IV) and Se(VI) on Beishan granite: Batch, ATR-FTIR, and XPS investigations. J Mol Liq 309:113029

    Article  CAS  Google Scholar 

  64. Jin Q, Su L, Montavon G, Sun YF, Chen ZY, Guo ZJ, Wu WS (2016) Surface complexation modeling of U(VI) adsorption on granite at ambient/elevated temperature: experimental and XPS study. Chem Geol 433:81–91

    Article  CAS  Google Scholar 

  65. Zhang Z, Gao C, Sun YF, Jin Q, Yang JW, Ge MT, Chen ZY, Guo ZJ (2021) Co-transport of U(VI) and bentonite colloids: Influence of colloidal gibbsite. Appl Clay Sci 205:106033

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Nuclear Facilities Decommissioning Treatment Project of State Administration of Science, Technology and Industry for National Defense (China Nuclear Economic and Administration [2019] No.755), Nuclear Facilities Decommissioning and Radioactive Waste Treating (China Nuclear Economic and Administration [2018] No.1045), CAEA Innovation Center for Geological Disposal of High-Level Radioactive Waste (CXJJ21102211), National Foreign Expert Project (G2022029012L), Key Scientific Research Fund of Hunan Provincial Education Department (23A0327), Postgraduate Scientific Research Project of Hunan Province (CX20230966), Scientific Research Project of University of South China(20224130214), and Hengyang City Guidance Plan Project (2021jh013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianzhe Duan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, P., Wang, J., Ling, H. et al. Safety assessment in the disposal of high-level radioactive wastes (HLWs): a geochemical study of uranium complexes in deep groundwater in granites from Beishan, China. J Radioanal Nucl Chem 333, 1779–1791 (2024). https://doi.org/10.1007/s10967-024-09413-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-024-09413-w

Keywords

Navigation