Skip to main content
Log in

Diffusive transport of selenium oxyanions in compacted natural clays: role of selenium speciation and clay geochemistry

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Predictive subsurface transport of selenium oxyanions is important for the assessment of long-term nuclear waste repository performance, as well as monitoring compliance of selenium presence in groundwater once discharged from industry, agriculture or natural seleniferous minerals. The aim of the present study is to quantify the diffusion of selenite and selenate through water-saturated compacted clays of smectite and illite rich geochemistry. Diffusion coefficient (De) values for selenium oxyanions in argillaceous clay are ̴ 10–12 m2s−1 and are nearly an order of magnitude higher in the bentonite clay. Results indicate the role of clay geochemistry in controlling migration of selenium oxyanions through natural clay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All the data presented in this manuscript can be otained from the authors.

References

  1. Cox AG, Tsomides A, Kim AJ, Saunders D, Hwang KL, Evason KJ, Heidel J, Brown KK, Yuan M, Lien EC, Lee BC, Nissim S, Dickinson B, Chhangawala S, Chang CJ, Asara JM, Houvras Y, Gladyshev VN, Goessling W (2016) Selenoprotein H is an essential regulator of redox homeostasis that cooperates with p53 in development and tumorigenesis. Proc Natl Acad Sci USA 113, No E5562

  2. Arthur JR, Nicol F, Beckett GJ (1992) The role of selenium in thyroid hormone metabolism and effects of selenium deficiency on thyroid hormone and iodine metabolism. Biol Trace Elem Res 34:321–325

    Article  CAS  PubMed  Google Scholar 

  3. Labunskyy VM, Hatfield DL, Gladyshev VN (2014) Selenoproteins: molecular pathways and physiological roles. Physiol Rev 94:739–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lenz M, Lens PNL (2009) The essential toxin: the changing perception of selenium in environmental sciences. Sci Total Environ 407:3620–3633

    Article  CAS  PubMed  Google Scholar 

  5. A global overview of national regulations and standards for drinking-water quality, CC BY-NC-SA 3.0 IGO; WHO, 2018

  6. Wen H, Carignan J (2007) Reviews on atmospheric selenium: emissions, speciation and fate. Atmos Environ 41:7151–7165

    Article  CAS  Google Scholar 

  7. Seiler RL, Skorupa JP, Peltz LA (1999) Areas susceptible to irrigation-induced selenium contamination of water and biota in the western United States. USGS Circular 1180:1–36

    Google Scholar 

  8. Morrison SJ, Metzler DR, Dwyer BP (2002) Removal of As, Mn, Mo, Se, U, V and Zn from groundwater by zero-valent iron in a passive treatment cell: reaction progress modeling. J Contam Hydrol 56:99–116

    Article  CAS  PubMed  Google Scholar 

  9. Mast MA, Mills TJ, Paschke SS, Keith G, Linard JI (2014) Mobilization of selenium from the mancos shale and associated soils in the lower uncompahgre river basin. Colorado Appl Geochem 48:16–27

    Article  CAS  Google Scholar 

  10. Tuttle MLW, Fahy JW, Elliott JG, Grauch RI, Stillings LL (2014) Contaminants from Cretaceous black shale: I. Natural weathering processes controlling contaminant cycling in Mancos Shale, southwestern United States, with emphasis on salinity and selenium. Appl Geochem 46:57–71

    Article  CAS  Google Scholar 

  11. Descostes M, Blin V, Bazer-Bachi F, Meier P, Grenut B, Radwan J, Schlegel ML, Buschaert S, Coelho D, Tevissen E (2008) Diffusion of anionic species in Callovo-Oxfordian argillites and Oxfordian limestones (Meuse/Haute-Marne, France). Appl Geochem 23:655–677

    Article  CAS  Google Scholar 

  12. Wu H, Huang W, Duan Z, Luo M, Wang Z, Hua R (2020) Investigation of Se(IV) diffusion in compacted Tamusu clay by capillary method. J Radioanal Nucl Chem 324:903–911

    Article  CAS  Google Scholar 

  13. Bonin B (1998) Deep geological disposal in argillaceous formations, studies at the Tournemire test site. J Contam Hydrol 35:315–330

    Article  CAS  Google Scholar 

  14. Schwyn B, Wersin P, Ruedi J, Schneider J, Altmann S, Missana T, Norseck U (2012) FUNMIG Integrated Project results and conclusions from a safety case perspective. Appl Geochem 27(2):501–515

    Article  CAS  Google Scholar 

  15. Sato H, Yui M, Yoshikawa H (1995) Diffusion behavior for Se and Zr in sodium-bentonite. Mater Res Soc Symp Proc 176(171):269–276

    Google Scholar 

  16. Idemitsu K, Kozaki H, Yuhara M, Arima T, Inagaki Y (2015) Diffusion behaviorof selenite in purified bentonite. Prog Nucl Energy 92:279–285

    Article  Google Scholar 

  17. Czompoly O, Fabian M, Koranyi TI, Nagy G, Horvath ZE, Zizak I, Pollastri S, Aertsens M, Osan J (2023) Adsorption and diffusion of selenite on Boda Claystone Formation. Appl Clay Sci 241:106997

    Article  CAS  Google Scholar 

  18. Savoye S, Schlegel ML, Frasca B (2021) Mobility of selenium oxyanions in clay-rich media: a combined batch and diffusion experiments and synchrotron-based spectroscopic investigation. Appl Geochem 128:104932

    Article  CAS  Google Scholar 

  19. Frasca B, Savoye S, Wittebroodt C, Leupin OX, Michelot JL (2014) Comparative study of Se oxyanions retention on three argillaceous rocks: upper to arcian (Tournemire, France), black shales (Tournemire, France) and Opalinus clay (Mont Terri, Switzerland). J. Environ. Radioact. 127:133–140

    Article  CAS  PubMed  Google Scholar 

  20. He H, Liu J, Dong Y, Li H, Zhao S, Wang J, Jia M, Zhang H, Liao J, Yang J, Yang Y, Liu N (2019) Sorption of selenite on Tamusu clay in simulated groundwater with high salinity under aerobic/anaerobic conditions. J Environ Radioact 203:210–219

    Article  CAS  PubMed  Google Scholar 

  21. Missana T, Alonso U, García-Gutierrez M (2009) Experimental study and modelling of selenite sorption onto illite and smectite clays. J Colloid Interface Sci 334:132–138

    Article  CAS  PubMed  Google Scholar 

  22. Karger J, Ruthven DM (2016) Diffusion in nanoporous materials: fundamental principles, insights and challenges. New J Chem 40:4027–4048

    Article  Google Scholar 

  23. Kozaki T, Liu J, Sato S (2008) Diffusion mechanism of sodium ions in compacted montmorillonite under different NaCl concentration. Phys Chem Earth 33:957–961

    Article  Google Scholar 

  24. Kumar S, Pente AS, Bajpai RK, Kaushik CP, Tomar BS (2013) Americium sorption on smectite-rich natural clay from granitic ground water. Appl Geochem 35:28–34

    Article  CAS  Google Scholar 

  25. Patel MA, Kar AS, Garg D, Kumar S, Tomar BS, Bajpai RK (2017) Sorption studies of radionuclides on argillaceous clays of Cuddapah System. J Radioanal Nucl Chem 313:555–563

    Article  CAS  Google Scholar 

  26. Wang Z, Wang H, Li Q, Xu M, Guo Y, Li J, Wu T (2016) pH effect on Re(VII) and Se(IV) diffusion in compacted GMZ bentonite. Appl Geochem 73:1–7

    Article  CAS  Google Scholar 

  27. Crank J (1975) The mathematics of diffusion. Clarendon Press, Oxford

    Google Scholar 

  28. Van Brakel J, Heertjes PM (1974) Analysis of diffusion in macroporous media in terms of a porosity, a tortuosity and a constrictivity factor. Int J Heat Mass Transfer 17:1093–1103

    Article  Google Scholar 

  29. Van Loon LR, Soler JM (2004) Diffusion of HTO, 36Cl-, 125I- and 22Na+ in Opalinus Clay: effect of confining pressure, sample orientation, sample depth and temperature, PSI Bericht Nr. 04 - 03

  30. Glaus MA, Rossé R, Van Loon LR, Yaroshchuk AE (2008) Tracer diffusion in sintered stainless steel filters: measurement of effective diffusion coefficients and implications for diffusion studies with compacted clays. Clays Clay Miner 56:677–685

    Article  CAS  Google Scholar 

  31. Beauwens T, De Canniere P, Hugo M, Lian W, Norbert M (2005) Studying the migration behaviour of selenate in Boom Clay by electromigration. Eng. Geo. 77:285–293

    Article  Google Scholar 

  32. Missana T, Alonso U, García-Gutierrez M (2009) Experimental study and modelling of selenite sorption onto illite and smectite clays. J Colloid Interface Sci 334:132–138

    Article  CAS  PubMed  Google Scholar 

  33. Kumar S, Chandane A, Sengupta A, Jaykrishnan VB, Sastry PU, Bajpai RK (2023) Diffusion of Cs+ in compacted Na/K-saturated smectite rich natural clay: role of clay microstructure. J Radioanal Nucl Chem 332:203–211

    Article  CAS  Google Scholar 

  34. Eklund L, Persson I (2014) Structure and hydrogen bonding of the hydrated selenite and selenate ions in aqueous solution. Dalton Trans 43:6315–6321

    Article  CAS  PubMed  Google Scholar 

  35. Tachi Y, Yotsuji K (2014) Diffusion and sorption of Cs+, Na+, I- and HTO in compacted sodium montmorillonite as a function of porewater salinity: Integrated sorption and diffusion model. Geochim Cosmochim Acta 132:75–93

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the help and support of Dr. S. Jeyakumar, Head, CCS, RACD and Shri M. K. Saxena, Head, RACD during this work. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Kumar.

Ethics declarations

Conflict of interest

Authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Chandane, A. & Bajpai, R.K. Diffusive transport of selenium oxyanions in compacted natural clays: role of selenium speciation and clay geochemistry. J Radioanal Nucl Chem 333, 1055–1062 (2024). https://doi.org/10.1007/s10967-024-09353-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-024-09353-5

Keywords

Navigation