Skip to main content
Log in

Thermoluminescence (TL) dosimetric characteristics of pink Himalayan salt from Khewra, Pakistan

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In the present study, the dosimetric features of pink Himalayan salt pellets were studied. Energy dependence exhibited an over response up to 100 keV with a maximum factor of ~ 10 at 33 keV. The maximum angular dependence of ~ 46% was observed at 90° angle of incidence. The TL response was found to be dose rate independent and showed a good reproducibility with < 5% COV. The sample sensitivity was comparable to TLD-100 (beyond 500 mGy). The effective atomic number (Zeff) was found to be 15.20. Based on these dosimetric features, pink Himalayan salt can be a good potential candidate for therapeutic dosimetry applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Furetta C (2003) Handbook of thermoluminescence. World Scientific, Singapore

    Book  Google Scholar 

  2. Kortov V (2010) Nanophosphors and outlooks for their use in ionizing radiation detection. Radiat Meas 45:512–515

    Article  CAS  Google Scholar 

  3. Alvarez P, Kry S, Stingo F, Followill D (2017) TLD and OSLD dosimetry systems for remote audits of radiotherapy external beam calibration. Radiat Meas 106:412–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kron T, Haworth A, Williams I (2013) Dosimetry for audit and clinical trials: challenges and requirements. J Phys Conf Ser 444:012014

    Article  Google Scholar 

  5. Nelson V, McLean I, Holloway L (2008) Use of thermoluminescent dosimetry (TLD) for quality assurance of orthovoltage X-ray therapy machines. Radiat Meas 43:908–911

    Article  CAS  Google Scholar 

  6. McKeever SW, Moscovitch M, Townsend PD (1995) Thermoluminescence dosimetry materials: properties and uses

  7. Hayat S, Siddique MT, Wazir-ud-Din M, Jain M (2022) Dosimetric and TL investigation of natural and heat-treated Pakistani Onyx at high beta doses. J Lumin 251:119178

    Article  CAS  Google Scholar 

  8. Kalita J, Kaya-Keleş Ş, Çakal G, Meriç N, Polymeris G (2021) Thermoluminescence and optically stimulated luminescence properties of ulexite mineral. J Lumin 230:117759

    Article  CAS  Google Scholar 

  9. Mahmood MM, Kakakhel MB, Din MW-U, Hayat S, Ahmad K, Siddique MT et al (2022) Thermoluminescence (TL), kinetic parameters and dosimetric features of pakistani limestone. Appl Radiat Isot 188:110357

    Article  CAS  PubMed  Google Scholar 

  10. Sabry M, Alazab HA, Gad A, El-Faramawy N (2021) Thermoluminescence properties of natural Egyptian calcite. J Lumin 238:118273

    Article  CAS  Google Scholar 

  11. Wazir-ud-Din M, Poelman D, De Grave J, Vandenberghe D, Kakakhel MB, Hayat S et al (2023) Thermoluminescence dosimetric and kinetic characterization of Pakistani fluorite after β irradiation. Nucl Instrum Methods Phys Res Sect B 540:246–258

    Article  ADS  CAS  Google Scholar 

  12. McKeever SW (1988) Thermoluminescence of solids, vol 3. Cambridge University Press, London

    Google Scholar 

  13. Spooner NA, Smith BW, Williams OM, Creighton DF, McCulloch I, Hunter PG et al (2011) Analysis of luminescence from common salt (NaCl) for application to retrospective dosimetry. Radiat Meas 46:1856–1861

    Article  CAS  Google Scholar 

  14. Hunter P, Spooner N, Smith B, Creighton D (2012) Investigation of emission spectra, dose response and stability of luminescence from NaCl. Radiat Meas 47:820–824

    Article  CAS  Google Scholar 

  15. Polymeris GS, Kitis G, Kiyak NG, Sfamba I, Subedi B, Pagonis V (2011) Dissolution and subsequent re-crystallization as zeroing mechanism, thermal properties and component resolved dose response of salt (NaCl) for retrospective dosimetry. Appl Radiat Isot 69:1255–1262

    Article  CAS  PubMed  Google Scholar 

  16. Bernhardsson C, Christiansson M, Mattsson S, Rääf CL (2009) Household salt as a retrospective dosemeter using optically stimulated luminescence. Radiat Environ Biophys 48:21–28

    Article  PubMed  Google Scholar 

  17. Callo-Escobar DJ, Cano NF, Rao TG, Gonzales-Lorenzo CD, Turpo-Huahuasoncco KV, Pacompia Y et al (2022) Identification of ESR centers and their role in the TL of natural salt from Lluta, Peru. Appl Radiat Isot 182:110126

    Article  CAS  PubMed  Google Scholar 

  18. Gonzales-Lorenzo CD, Callo-Escobar DJ, Ccollque-Quispe AA, Rao TG, Aragón F, Aquino J et al (2022) Effect of annealing temperature on the structural, thermoluminescent, and optical properties of naturally present salt from Lluta region of Peru. Opt Mater 126:112215

    Article  Google Scholar 

  19. Anjum MI, Ur Rehman S, Kakakhel MB, Siddique MT, Mahmood MM, Hayat S et al (2022) Thermoluminescence study of Pink Himalayan salt from Khewra mines, Pakistan. J Lumin 252:119329

    Article  CAS  Google Scholar 

  20. Ahmad K, Kakakhel MB, Hayat S, Wazir-ud-Din M, Mahmood MM, Rehman SU et al (2021) Thermoluminescence study of pellets prepared using NaCl from Khewra Salt Mines in Pakistan. Radiat Environ Biophys 60:365–375

    Article  CAS  PubMed  Google Scholar 

  21. Elashmawy M (2018) Study of constraints in using household NaCl salt for retrospective dosimetry. Nucl Instrum Methods Phys Res Sect B 423:49–61

    Article  ADS  CAS  Google Scholar 

  22. Yüce ÜR, Engin B (2017) Effect of particle size on the thermoluminescence dosimetric properties of household salt. Radiat Meas 102:1–9

    Article  Google Scholar 

  23. Horowitz Y, Oster L, Eliyahu I (2018) Review of dose-rate effects in the thermoluminescence of LiF: Mg, Ti (Harshaw). Radiat Prot Dosimetry 179:184–188

    Article  CAS  PubMed  Google Scholar 

  24. Khazal KAR, Abul-Hail RC (2010) Study of the possibility of using food salt as a gamma ray dosimeter. Nucl Instrum Methods Phys Res Sect A 624:708–715

    Article  ADS  CAS  Google Scholar 

  25. Waldner L, Rääf C, Hinrichsen Y, Herrnsdorf L, Bernhardsson C (2020) Experimentally determined and Monte Carlo–calculated energy dependence of NaCl pellets read by optically stimulated luminescence for photon beams in the energy range 30 keV to 1.25 MeV. J Radiol Prot 40:1321

    Article  Google Scholar 

  26. Azim MM, Sani SA, Daar E, Khandaker M, Almugren K, Alkallas F et al (2020) Luminescence properties of natural dead sea salt pellet dosimetry upon thermal stimulation. Radiat Phys Chem 176:108964

    Article  Google Scholar 

  27. Guimarães C, Moralles M, Okuno E (2007) GEANT4 simulation of the angular dependence of TLD-based monitor response. Nucl Instrum Methods Phys Res Sect A 580:514–517

    Article  ADS  Google Scholar 

  28. Jin H, Duftschmid KE, Strachotinsky C (1992) Investigation of a new LiF TLD individual dosimeter for measuring personal dose equivalent Hp (d) on different phantoms. Oesterreichisches Forschungszentrum Seibersdorf GmbH, Seibersdorf

    Google Scholar 

  29. Vohra K, Bhatt R, Chandra B, Pradhan A, Lakshmanan A, Shastry S (1980) A personnel dosimeter TLD badge based on CaSO4: Dy Teflon TLD discs. Health Phys 38:193–197

    Article  CAS  PubMed  Google Scholar 

  30. Ahmad K, Kakakhel MB, Hayat S, Wazir-Ud-Din M, Mahmood MM, Ur-Rehman S et al (2022) Dosimetric properties of thermoluminescent NaCl pellets from Khewra Salt Mines Pakistan. Luminescence 37:1701–9

    Article  CAS  PubMed  Google Scholar 

  31. Fayet-Moore F, Wibisono C, Carr P, Duve E, Petocz P, Lancaster G et al (2020) An analysis of the mineral composition of pink salt available in Australia. Foods 9:1490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nambi K (1977) Thermoluminescence: Its understanding and applications. Instituto de Energia Atomica, Rio de Janeiro

    Google Scholar 

  33. Lopez F, Cabrera J, Agullo-Lopez F (1979) Radiation-induced colouring in NaCl: Mn2+. J Phys C Solid State Phys 12:1221

    Article  ADS  CAS  Google Scholar 

  34. Hernandez J, Camarillo E, Munoz G, Flores C, Cabrera E, Jaque F et al (2001) Red and green fluorescence of Mn2+ in NaCl. Opt Mater 17:491–495

    Article  ADS  CAS  Google Scholar 

  35. Davidson AT, Kozakiewicz AG, Derry TE, Comins JD, Suszynska M (2004) Effects of various dopants on NaCl and KCl glow curves. Nucl Instrum Methods Phys Res Sect B 218:249–254

    Article  ADS  CAS  Google Scholar 

  36. Datz H, Druzhyna S, Oster L, Orion I, Horowitz Y (2016) Study of the suitability of Israeli household salt for retrospective dosimetry. Radiat Prot Dosim 170:407–411

    Article  CAS  Google Scholar 

  37. Kry SF, Alvarez P, Cygler JE, DeWerd LA, Howell RM, Meeks S et al (2020) AAPM TG 191: clinical use of luminescent dosimeters: TLDs and OSLDs. Med Phys 47:e19–e51

    Article  PubMed  Google Scholar 

  38. Oliveira EL, De Barros VS, Asfora VK, Khoury HJ (2018) Evaluation of a LiF: Mg, Ti thermoluminescent ring dosimeter according to the IEC 62387: 2012 Standards. J Phys Conf Ser 975:012036

    Article  Google Scholar 

  39. Luo L, Benevides L, Streetz K, McKee C (2017) Type testing a new personnel dosimetry system to IEC 62387. Radiat Meas 106:525–530

    Article  CAS  Google Scholar 

  40. Wazir-ud-Din M, Mahmood MM, Ahmad K, Hayat S, Siddique MT, Kakakhel MB et al (2022) Computerized glow curve deconvolution (CGCD): a comparison using asymptotic vs rational approximation in thermoluminescence kinetic models. Appl Radiat Isot 179:110014

    Article  CAS  PubMed  Google Scholar 

  41. Bos AJ (2006) Theory of thermoluminescence. Radiat Meas 41:S45–S56

    Article  ADS  Google Scholar 

  42. Balian HG, Eddy NW (1977) Figure-of-merit (FOM), an improved criterion over the normalized chi-squared test for assessing goodness-of-fit of gamma-ray spectral peaks. Nucl Inst Methods 145:389–395

    Article  ADS  CAS  Google Scholar 

  43. Kurudirek M (2014) Effective atomic numbers and electron densities of some human tissues and dosimetric materials for mean energies of various radiation sources relevant to radiotherapy and medical applications. Radiat Phys Chem 102:139–146

    Article  ADS  CAS  Google Scholar 

  44. Khan FM, Gibbons JP (2014) Khan’s the physics of radiation therapy. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  45. Furetta C (2010) Handbook of thermoluminescence. World Scientific, Singapore

    Google Scholar 

  46. Souza LF, Santos WS, Belinato W, Silva RMV, Caldas LVE, Souza DN (2019) Mass energy absorption coefficients and energy responses of magnesium tetraborate dosimeters for 0.02 MeV to 2.0 MeV photons using Monte Carlo simulations. Appl Radiat Isot 148:232–239

    Article  CAS  PubMed  Google Scholar 

  47. Malthez AL, Freitas MB, Yoshimura EM, Button VL (2014) Experimental photon energy response of different dosimetric materials for a dual detector system combining thermoluminescence and optically stimulated luminescence. Radiat Meas 71:133–138

    Article  CAS  Google Scholar 

  48. Ekendahl D, Bulánek B, Judas L (2016) A low-cost personal dosemeter based on optically stimulated luminescence (OSL) of common household salt (NaCl). Radiat Meas 85:93–98

    Article  CAS  Google Scholar 

  49. Tochilin E, Goldstein N (1966) Dose rate and spectral measurements from pulsed x-ray generators. Health Phys 12:1705–1714

    Article  CAS  Google Scholar 

  50. Moor D, Horspool B, Stokes R (2008) Performance of the Harshaw DXT-RAD (TLD-100) dosemeter. Radiat Meas 43:533–537

    Article  CAS  Google Scholar 

  51. Halefoglu Y, Oglakci M, Portakal Z, Akca S, Souadi G, Canimoglu A et al (2020) A study on thermoluminescence behaviour of Eu doped LaB3O6 irradiated with beta particles. Radiat Phys Chem 168:108571

    Article  CAS  Google Scholar 

  52. N. B. Wahib, S. Abdul Sani, A. Ramli, S. Ismail, M. H. Abdul Jabar, M. U. Khandaker, et al., "Natural dead sea salt and retrospective dosimetry," Radiation and environmental biophysics, vol. 59, pp. 523–537, 2020.

  53. Mehrabi M, Zahedifar M, Saeidi-Sogh Z, Ramazani-Moghaddam-Arani A, Sadeghi E, Harooni S (2017) Thermoluminescence and photoluminescence properties of NaCl: Mn, NaCL: Cu nano-particles produced using co-precipitation and sono-chemistry methods. Nucl Instrum Methods Phys Res Sect A 846:87–93

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Secondary Standard Dosimetry Laboratory (SSDL), Radiation Dosimetry Group (RDG) and Central Analytical Facility Division (CAFD), PINSTECH, Islamabad for providing the irradiation, TL measurement and ICP-OES facilities respectively.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

MIA: Conceptualization, Data curation, Investigation, Writing – original draft, SR: Conceptualization, Reviewing and Editing, MBK: Resources, Reviewing, Editing, MTS: Resources, Visualization B: Resources, SN: Resources, Investigation.

Corresponding author

Correspondence to Shakeel Ur Rehman.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anjum, M.I., Ur Rehman, S., Kakakhel, M.B. et al. Thermoluminescence (TL) dosimetric characteristics of pink Himalayan salt from Khewra, Pakistan. J Radioanal Nucl Chem 333, 917–925 (2024). https://doi.org/10.1007/s10967-023-09329-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09329-x

Keywords

Navigation