Skip to main content
Log in

Trap spectroscopy and dosimetric aspects of natural kyanite mineral

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Thermoluminescence (TL) of X-ray irradiate natural kyanite (Al2SiO5) mineral annealed at 473, 573, 673 and 773 K was studied within 300–520 K. For all types of samples, TL glow curves revealed a stable peak at around 405 K. Analyzing the glow curves by computerized glow curve deconvolution process, one electron trap center had been estimated at depth around 1.01 eV from the conduction band. Investigation of TL emission spectra recorded within 300–520 K showed two intense peaks centered at around 366 and 688 nm, which confirmed the presence of two recombination centers at depth around 3.39 and 1.81 eV from the conduction band. Based on the analysis, a band diagram for kyanite crystal had been proposed showing the possible trap and recombination centers. Dose response, fading analysis and reproducibility measurement were carried out for all type of samples. For the highest annealed sample (773 K), linear dose response was observed within 15–1000 mGy. The rate of fading was very high just after irradiation but slowed after 5 days. The reproducibility of 773 K annealed sample was excellent. After ten recycle, the coefficient of variation was found to be only 0.75 %. These analyses demand the potential use of 773 K annealed kyanite as a natural X-ray dosimeter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.R. Keifer, P. Mayshart, V. Mejdhal, Radiation Dosimetery, in Radiation Protection Dosimetry Radiation Dosimetry, vol. III, ed. by H. Attix, W.C. Roesch, E. Tochilin (Academic, New York, 1969)

    Google Scholar 

  2. H. Nishita, M. Hamilton, R.M. Haug, Soil Sci. 117, 211 (1974)

    Article  Google Scholar 

  3. A.L. Moss, J.W. Mcklveen, Health Phys. 34, 137 (1978)

    Article  Google Scholar 

  4. H. Nagabhushana, B.N. Lakshminarasappa, F. Singh, D.K. Avasthi, Radiat. Meas. 36, 653 (2003)

    Article  Google Scholar 

  5. E.S. Dana, E.M. Ford, Minerology (Asia Publishing House, Bombay, 1962), p. 617

    Google Scholar 

  6. H. Nagabhushanaa, S.C. Prashanthaa, B.N. Lakshminarasappaa, F. Singh, J. Lumin. 128, 7 (2008)

    Article  Google Scholar 

  7. G. Wary, J.M. Kalita, Indian J. Pure Appl. Phys. 50, 566 (2012)

    Google Scholar 

  8. J.M. Kalita, G. Wary, Indian J. Phys. 88, 391 (2014)

    Article  ADS  Google Scholar 

  9. G. Kitis, J.M. Gomez-Ros, J.W.N. Tuyn, J. Phys. D Appl. Phys. 31, 2636 (1998)

    Article  ADS  Google Scholar 

  10. H.G. Balian, N.W. Eddy, Nucl. Instrum. Method 145, 389 (1977)

    Article  ADS  Google Scholar 

  11. C.E. May, J.A. Partridge, J. Chem. Soc. 40, 1401 (1964)

    ADS  Google Scholar 

  12. Y. Rodríguez-Lazcano, V. Correcher, J. Garcia-Guinea, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 113, 281 (2013)

    Article  ADS  Google Scholar 

  13. J.M. Gómez-Ros, V. Correcher, J. Garcia-Guinea, A. Delgado, Radiat. Prot. Dosim. 119, 93 (2006)

    Article  Google Scholar 

  14. V. Correcher, J.M. Gómez-Ros, J. Garcia-Guinea, P.L. Martin, A. Delgado, Radiat. Prot. Dosim. 119, 176 (2006)

    Article  Google Scholar 

  15. V. Correcher, J. Garcia-Guinea, E. Crespo-Feo, Y. Rodriguez-Lazcano, P. Prado-Herrero, Thermochim. Acta 503, 12 (2010)

    Article  Google Scholar 

  16. S.W.S. McKeever, Thermoluminescence of Solids, 1st edn. (Cambridge University Press, Cambridge, 1985)

    Book  Google Scholar 

  17. G.F.J. Garlick, A.F. Gibson, Proc. Phys. Soc. 60, 574 (1948)

    Article  ADS  Google Scholar 

  18. A. Platonov, A. Tarashchan, K. Langer, M. Andurut, G. Partzsch, S. Matsyuk, Phys. Chem. Miner. 25, 203 (1998)

    Article  ADS  Google Scholar 

  19. M. Gaft, R. Reisfeld, G. Panczer, Modern Luminescence Spectroscopy of Minerals and Materials (Springer, Berlin, 2005)

    Google Scholar 

  20. M. Gaft, Luminescence of Minerals Under Laser Excitation (Ministry of Geology, Moscow, 1989). (in Russian)

    Google Scholar 

  21. E. Mposkos, M. Perraki, S. Palikari, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 73, 477 (2009)

    Article  ADS  Google Scholar 

  22. D.R. Hutton, G.J. Troup, Br. J. Appl. Phys. 15, 275 (1964)

    Article  ADS  Google Scholar 

  23. G.J. Troup, D.R. Hutton, Br. J. Appl. Phys. 15, 1493 (1964)

    Article  ADS  Google Scholar 

  24. S.O. Souzaa, P.C. Selvinb, S. Watanabe, J. Lumin. 102–103, 575 (2003)

    Article  Google Scholar 

  25. A.N. Platonov, A.N. Tarashchan, K. Langer, M. Andrut, G. Partzsch, S.S. Matsyuk, Phys. Chem. Miner. 25, 203 (1998)

    Article  ADS  Google Scholar 

  26. R.K. Gartia, Phys. Status Solidi (a) 37, 571 (1976)

    Article  ADS  Google Scholar 

  27. L. Rey, R.K. Gartia, K.B. Singh, Th.B. Singh, Nucl. Instrum. Methods Phys. Res. B 267, 3633 (2009)

    Article  ADS  Google Scholar 

  28. M. Bidyasagar, Th.B. Singh, A.G. Barua, R.K. Gartia, Indian J. Pure Appl. Phys. 52, 13 (2014)

    Google Scholar 

  29. E. Pekpak, A. Yılmaz, G. Ozbayoglu, Open Miner. Process. J. 3, 14 (2010)

    Article  ADS  Google Scholar 

  30. F.H. Attix, Introduction of Radiological Physics and Radiation Dosimetry (Wiley, New York, Chichester, 1986)

    Book  Google Scholar 

  31. CEI/IEC 1066, 1991. Thermoluminescence Dosimetry Systems for Personnel and Environmental Monitoring, International Standard CEI/IEC 1066, (1991)

  32. C. Furetta, Handbook of Thermoluminescence, 1st edn. (World Scientific, Singapore, 2003)

    Book  Google Scholar 

Download references

Acknowledgments

Authors thank to UGC (University Grand Commission), New Delhi, for providing us the UGC major research project (Project No.: 42-910/2013 (SR)), DST (FIST) and ASTEC, Govt. of Assam (India) for giving instrumental facilities in the department to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Kalita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalita, J.M., Wary, G. Trap spectroscopy and dosimetric aspects of natural kyanite mineral. Appl. Phys. A 119, 1555–1560 (2015). https://doi.org/10.1007/s00339-015-9137-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9137-9

Keywords

Navigation