Skip to main content
Log in

Phosphate-functionalized mesoporous carbon for efficient extraction of uranium (VI)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A simple approach for preparing high-efficiency and cost-effective adsorbent to extract uranium in nuclear wastewater is essential for safeguarding the environment. This study introduces an easy procedure to synthesize phosphate-rich biochar (PS) from sawdust by treating it with phosphoric acid before carbonization (700 °C). The sample was characterized by SEM, FT-IR, BET and XPS, indicating that the PS700 exhibited a high concentration of phosphorous groups, high specific surface area and developed mesoporous structure. Subsequently, the effects of pH (optimal at pH 7), adsorption kinetics (fitted by quasi-second-order), and sorption isotherms (modeled by Langmuir) were investigated. The best uranium (VI) adsorption performance of PS700 is 808 mg g−1 at 40 °C and pH 7. In addition, PS700 shows remarkable selectivity and recyclability for uranium (VI). The sorption mechanism can be attributed to the uranium (VI) binding with phosphate groups on the surface of sorbent, which significantly improve its ability for uranium (VI) adsorption. This study displays a great application prospect of PS700 as innovative adsorbent for the efficient extraction of uranium (VI) from nuclear wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Zhang X, Liu R, Wang H et al (2023) Fabrication of phosphate-containing mesoporous carbon for fast and efficient uranium (VI) extraction. Colloids Surf Physicochem Eng Asp 662:130994. https://doi.org/10.1016/j.colsurfa.2023.130994

    Article  CAS  Google Scholar 

  2. Cheira MF, Kouraim MN, Zidan IH et al (2020) Adsorption of U(VI) from sulfate solution using montmorillonite/polyamide and nano-titanium oxide/polyamide nanocomposites. J Environ Chem Eng 8:104427. https://doi.org/10.1016/j.jece.2020.104427

    Article  CAS  Google Scholar 

  3. Wang S, Wang L, Li Z et al (2021) Highly efficient adsorption and immobilization of U(VI) from aqueous solution by alkalized MXene-supported nanoscale zero-valent iron. J Hazard Mater 408:124949. https://doi.org/10.1016/j.jhazmat.2020.124949

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Wang K, Wang F, Chen F et al (2019) One-pot preparation of NaA zeolite microspheres for highly selective and continuous removal of Sr(II) from aqueous solution. ACS Sustain Chem Eng 7:2459–2470. https://doi.org/10.1021/acssuschemeng.8b05349

    Article  CAS  Google Scholar 

  5. Foster RI, Amphlett JTM, Kim K-W et al (2020) SOHIO process legacy waste treatment: uranium recovery using ion exchange. J Ind Eng Chem 81:144–152. https://doi.org/10.1016/j.jiec.2019.09.001

    Article  CAS  Google Scholar 

  6. Hu R, Xiao J, Wang T et al (2020) Engineering of phosphate-functionalized biochars with highly developed surface area and porosity for efficient and selective extraction of uranium. Chem Eng J 379:122388. https://doi.org/10.1016/j.cej.2019.122388

    Article  CAS  Google Scholar 

  7. Wei F, Cao C, Huang P, Song W (2015) A new ion exchange adsorption mechanism between carbonate groups and fluoride ions of basic aluminum carbonate nanospheres. RSC Adv 5:13256–13260. https://doi.org/10.1039/C4RA11018H

    Article  ADS  CAS  Google Scholar 

  8. Nagano T, Mitamura H, Yamashita Y et al (2014) Continuous liquid-liquid extraction of nickel from simulated electroless nickel plating liquid wastes by using a counter current emulsion flow extractor. Solvent Extr Res Dev Jpn 21:111–117

    Article  CAS  Google Scholar 

  9. Dang DH, Novotnik B, Wang W et al (2016) Uranium isotope fractionation during adsorption, (co)precipitation and biotic reduction. Environ Sci 50:12695–12704. https://doi.org/10.1021/acs.est.6b01459

    Article  CAS  Google Scholar 

  10. Jun B-M (2021) Purification of uranium-contaminated radioactive water by adsorption: a review on adsorbent materials. Sep Purif Technol 278(119675):2–30. https://doi.org/10.1016/j.seppur.2021.119675

    Article  CAS  Google Scholar 

  11. Li P, Wang J, Wang Y et al (2019) Photoconversion of U(VI) by TiO2: an efficient strategy for seawater uranium extraction. Chem Eng J 365:231–241. https://doi.org/10.1016/j.cej.2019.02.013

    Article  CAS  Google Scholar 

  12. Estes SL, Powell BA (2020) Enthalpy of uranium adsorption onto hematite. Environ Sci Technol 54:15004–15012. https://doi.org/10.1021/acs.est.0c04429

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Oyola Y, Janke CJ, Dai S (2016) Synthesis, development, and testing of high-surface-area polymer-based adsorbents for the selective recovery of uranium from seawater. Ind Eng Chem Res 55:4149–4160. https://doi.org/10.1021/acs.iecr.5b03981

    Article  CAS  Google Scholar 

  14. Valencia L, Kumar S, Nomena EM et al (2020) In-situ growth of metal oxide nanoparticles on cellulose nanofibrils for dye removal and antimicrobial applications. ACS Appl Nano Mater 3:7172–7181. https://doi.org/10.1021/acsanm.0c01511

    Article  CAS  Google Scholar 

  15. Wang H, Liu R, Wang H et al (2021) High effective enrichment of U( vi ) from aqueous solutions on versatile crystalline carbohydrate polymer-functionalized graphene oxide. Dalton Trans 50:14009–14017. https://doi.org/10.1039/D1DT02497C

    Article  CAS  PubMed  Google Scholar 

  16. Ci Z, Yue Y, Xiao J et al (2023) Spectroscopic and modeling investigation of U(VI) removal mechanism on nanoscale zero-valent iron/clay composites. J Colloid Interface Sci 630:395–403. https://doi.org/10.1016/j.jcis.2022.10.008

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Z-H, Lan J-H, Yuan L-Y et al (2020) Rational construction of porous metal-organic frameworks for uranium(VI) extraction: the strong periodic tendency with a metal node. ACS Appl Mater Interfaces 12:14087–14094. https://doi.org/10.1021/acsami.0c02121

    Article  CAS  PubMed  Google Scholar 

  18. Zhong X, Liang W, Lu Z, Hu B (2020) Highly efficient enrichment mechanism of U(VI) and Eu(III) by covalent organic frameworks with intramolecular hydrogen-bonding from solutions. Appl Surf Sci 504:144403. https://doi.org/10.1016/j.apsusc.2019.144403

    Article  CAS  Google Scholar 

  19. Gendy EA, Oyekunle DT, Ali J et al (2021) High-performance removal of radionuclides by porous organic frameworks from the aquatic environment: a review. J Environ Radioact 238–239:106710. https://doi.org/10.1016/j.jenvrad.2021.106710

    Article  CAS  PubMed  Google Scholar 

  20. Xue S, Song J, Wang X et al (2020) A systematic comparison of biogas development and related policies between China and Europe and corresponding insights. Renew Sustain Energy Rev 117:109474. https://doi.org/10.1016/j.rser.2019.109474

    Article  Google Scholar 

  21. Thotagamuge R, Kooh MRR, Mahadi AH et al (2021) Copper modified activated bamboo charcoal to enhance adsorption of heavy metals from industrial wastewater. Environ Nanotechnol Monit Manag 16:100562. https://doi.org/10.1016/j.enmm.2021.100562

    Article  CAS  Google Scholar 

  22. Miura A (2018) Mechanism of cesium adsorption by carbonized rice hull and beech sawdust. Separations 5:22. https://doi.org/10.3390/separations5020022

    Article  CAS  Google Scholar 

  23. Yanovska E, Ryabchenko K, Ianovska M et al (2014) Adsorption of tungsten, molybdenum, vanadium and chromium from aqueous solutions using pine sawdust-polyaniline composites. Nord Pulp Pap Res J 29:425–433. https://doi.org/10.3183/npprj-2014-29-03-p425-433

    Article  CAS  Google Scholar 

  24. Xu Z, Xing Y, Ren A et al (2020) Study on adsorption properties of water hyacinth-derived biochar for uranium (VI). J Radioanal Nucl Chem 324:1317–1327. https://doi.org/10.1007/s10967-020-07160-2

    Article  CAS  Google Scholar 

  25. Jin J, Li S, Peng X et al (2018) HNO3 modified biochars for uranium (VI) removal from aqueous solution. Bioresour Technol 256:247–253. https://doi.org/10.1016/j.biortech.2018.02.022

    Article  CAS  PubMed  Google Scholar 

  26. Wang S, Guo W, Gao F et al (2018) Lead and uranium sorptive removal from aqueous solution using magnetic and nonmagnetic fast pyrolysis rice husk biochars. RSC Adv 8:13205–13217. https://doi.org/10.1039/C7RA13540H

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Peng Y, Zhang Y, Tan Q, Huang H (2021) Bioinspired construction of uranium ion trap with abundant phosphate functional groups. ACS Appl Mater Interfaces 13:27049–27056. https://doi.org/10.1021/acsami.1c04892

    Article  CAS  PubMed  Google Scholar 

  28. Huang K, Hu C, Tan Q et al (2022) Highly efficient removal of cadmium from aqueous solution by ammonium polyphosphate-modified biochar. Chemosphere 305:135471. https://doi.org/10.1016/j.chemosphere.2022.135471

    Article  CAS  PubMed  Google Scholar 

  29. Yang H, Chen P, Chen W et al (2022) Insight into the formation mechanism of N, P co-doped mesoporous biochar from H3PO4 activation and NH3 modification of biomass. Fuel Process Technol 230:107215. https://doi.org/10.1016/j.fuproc.2022.107215

    Article  CAS  Google Scholar 

  30. Zhang L, Yao Z, Zhao L et al (2021) Synthesis and characterization of different activated biochar catalysts for removal of biomass pyrolysis tar. Energy 232:120927. https://doi.org/10.1016/j.energy.2021.120927

    Article  CAS  Google Scholar 

  31. Da T-X, Ren H-K, He W-K et al (2022) Prediction of uranium adsorption capacity on biochar by machine learning methods. J Environ Chem Eng 10:108449. https://doi.org/10.1016/j.jece.2022.108449

    Article  CAS  Google Scholar 

  32. Ahmed W, Núñez-Delgado A, Mehmood S et al (2021) Highly efficient uranium (VI) capture from aqueous solution by means of a hydroxyapatite-biochar nanocomposite: adsorption behavior and mechanism. Environ Res 201:111518. https://doi.org/10.1016/j.envres.2021.111518

    Article  CAS  PubMed  Google Scholar 

  33. Liu R, Wan Q, Yu Y et al (2023) Polyacrylate/phytic acid hydrogel derived phosphate-rich macroporous carbon foam for high-efficiency uranium adsorption. J Water Process Eng 53:103659. https://doi.org/10.1016/j.jwpe.2023.103659

    Article  Google Scholar 

  34. Dai X, Thi Hong Nhung N, Hamza MF et al (2022) Selective adsorption and recovery of scandium from red mud leachate by using phosphoric acid pre-treated pitaya peel biochar. Sep Purif Technol 292:121043. https://doi.org/10.1016/j.seppur.2022.121043

    Article  CAS  Google Scholar 

  35. Yue C, Liu R, Wan Q, Wang H, Liu L, Zhang X (2023) Synthesis of novel phosphate-based hypercrosslinked polymers for efficient uranium extraction from radioactive wastewater. J Water Process Eng 53:103582. https://doi.org/10.1016/j.jwpe.2023.103582

    Article  Google Scholar 

  36. Sun Y, Kang Y, Zhong W et al (2020) A simple phosphorylation modification of hydrothermally cross-linked chitosan for selective and efficient removal of U(VI). J Solid State Chem 292:121731. https://doi.org/10.1016/j.jssc.2020.121731

    Article  CAS  Google Scholar 

  37. Xu M, Han X, Wang T et al (2018) Conjugated microporous polymers bearing phosphonate ligands as an efficient sorbent for potential uranium extraction from high-level liquid wastes. J Mater Chem A 6:13894–13900. https://doi.org/10.1039/C8TA02875C

    Article  CAS  Google Scholar 

  38. Puziy AM, Poddubnaya OI, Gawdzik B, Tascón JMD (2020) Phosphorus-containing carbons: preparation, properties and utilization. Carbon 157:796–846. https://doi.org/10.1016/j.carbon.2019.10.018

    Article  CAS  Google Scholar 

  39. Zhang S, Zhao X, Li B et al (2016) “Stereoscopic” 2D super-microporous phosphazene-based covalent organic framework: design, synthesis and selective sorption towards uranium at high acidic condition. J Hazard Mater 314:95–104. https://doi.org/10.1016/j.jhazmat.2016.04.031

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Chouyyok W, Warner CL, Mackie KE et al (2016) Nanostructured metal oxide sorbents for the collection and recovery of uranium from seawater. Ind Eng Chem Res 55:4195–4207. https://doi.org/10.1021/acs.iecr.5b03650

    Article  CAS  Google Scholar 

  41. Zhang L, Su J, Yang S et al (2016) Extended X-ray absorption fine structure and density functional theory studies on the complexation mechanism of amidoximate ligand to uranyl carbonate. Ind Eng Chem Res 55:4224–4230. https://doi.org/10.1021/acs.iecr.5b03217

    Article  CAS  Google Scholar 

  42. Zhong L, He F, Liu Z et al (2022) Adsorption of uranium (VI) ions from aqueous solution by acrylic and diaminomaleonitrile modified cellulose. Colloids Surf Physicochem Eng Asp 641:128565. https://doi.org/10.1016/j.colsurfa.2022.128565

    Article  CAS  Google Scholar 

  43. Grabias E, Majdan M (2017) A DFT study of uranyl hydroxyl complexes: structure and stability of trimers and tetramers. J Radioanal Nucl Chem 313:455–465. https://doi.org/10.1007/s10967-017-5305-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. El-Maghrabi HH, Younes AA, Salem AR et al (2019) Magnetically modified hydroxyapatite nanoparticles for the removal of uranium (VI): preparation, characterization and adsorption optimization. J Hazard Mater 378:120703. https://doi.org/10.1016/j.jhazmat.2019.05.096

    Article  CAS  PubMed  Google Scholar 

  45. Bai J, Ma X, Yan H et al (2020) A novel functional porous organic polymer for the removal of uranium from wastewater. Microporous Mesoporous Mater 306:110441. https://doi.org/10.1016/j.micromeso.2020.110441

    Article  CAS  Google Scholar 

  46. Tian Y, Liu L, Ma F et al (2021) Synthesis of phosphorylated hyper-cross-linked polymers and their efficient uranium adsorption in water. J Hazard Mater 419:126538. https://doi.org/10.1016/j.jhazmat.2021.126538

    Article  CAS  PubMed  Google Scholar 

  47. Xu M (2018) Conjugated microporous polymers bearing phosphonate ligands as an efficient sorbent for potential uranium extraction from high-level liquid wastes. J Mater Chem A 6:13894–13900. https://doi.org/10.1039/c8ta02875c

    Article  CAS  Google Scholar 

  48. Sun Y, Zhang H, Yuan N et al (2021) Phosphorylated biomass-derived porous carbon material for efficient removal of U(VI) in wastewater. J Hazard Mater 413:125282. https://doi.org/10.1016/j.jhazmat.2021.125282

    Article  CAS  PubMed  Google Scholar 

  49. Ma D, Hu S, Li Y, Xu Z (2020) Adsorption of uranium on phosphoric acid-activated peanut shells. Sep Sci Technol 55:1623–1635. https://doi.org/10.1080/01496395.2019.1606016

    Article  CAS  Google Scholar 

  50. Zhou Y, Xiao J, Hu R et al (2020) Engineered phosphorous-functionalized biochar with enhanced porosity using phytic acid-assisted ball milling for efficient and selective uptake of aquatic uranium. J Mol Liq 303:112659. https://doi.org/10.1016/j.molliq.2020.112659

    Article  CAS  Google Scholar 

  51. Li F, Li D, Li X et al (2016) Microorganism-derived carbon microspheres for uranium removal from aqueous solution. Chem Eng J 284:630–639. https://doi.org/10.1016/j.cej.2015.09.015

    Article  CAS  Google Scholar 

  52. Zhang Z, Liu Y, Cao X, Liang P (2013) Sorption study of uranium on carbon spheres hydrothermal synthesized with glucose from aqueous solution. J Radioanal Nucl Chem 295:1775–1782. https://doi.org/10.1007/s10967-012-2247-3

    Article  CAS  Google Scholar 

  53. Budnyak TM, Gładysz-Płaska A, Strizhak AV et al (2018) Imidazole-2yl-phosphonic acid derivative grafted onto mesoporous silica surface as a novel highly effective sorbent for uranium(VI) ion extraction. ACS Appl Mater Interfaces 10:6681–6693. https://doi.org/10.1021/acsami.7b17594

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

XW: Investigation, Data curation, Writing—Original draft, Writing—Review & Editing. XW: Conceptualization, Writing—Review & Editing. WB: Investigation, Writing—Review & Editing. XL: Editing and Methodology. YT: Formal analysis and Visualization. LL: Resources, Supervision, Writing—Review & Editing.

Corresponding author

Correspondence to Longcheng Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Wang, X., Bian, W. et al. Phosphate-functionalized mesoporous carbon for efficient extraction of uranium (VI). J Radioanal Nucl Chem 333, 629–639 (2024). https://doi.org/10.1007/s10967-023-09318-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09318-0

Keywords

Navigation