Skip to main content
Log in

Use of silver-containing sorbents in anionic species of radioactive iodine management in nuclear industry and the methods of obtaining them

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Sorbents for anionic species of iodine are required at every stage of 129I management. Development of iodine adsorbing material suitable for usage as engineered safety barriers (ESB) component in deep geological repository (DGR) sites or geological disposal facilities (GDF) is a particularly important concern due to the final of disposal iodine-containing radioactive waste is one of the most challenging problem in nuclear industry nowadays. This literature review discusses data on silver-containing materials, which are characterized with the highest sorption properties towards anionic iodine species and high fixation permanence of radioiodine. Emphasis is on materials with high surface area modified with silver in various chemical forms (Ag+, Ag0, Ag2O, AgCl etc.), methods of these materials obtaining are analyzed. Studying of data reported in scientific literature shows that porous materials with silver applied on the surface as insoluble compounds, such as silver (I) oxide, silver chloride or bromide, are the most advantageous for usage as ESB component in DGR sites for anionic radioiodine species uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Raw data that support the finding of this paper are available from the corresponding author upon request.

References

  1. Neeway JJ, Kaplan DI, Bagwell CE, Rockhold ML, Szecsody JE, Truex MJ, Qafoku NP (2019) A review of the behavior of radioiodine in the subsurface at two DOE sites. Sci Total Environ 691:466–475. https://doi.org/10.1016/j.scitotenv.2019.07.146

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Riley BJ, Vienna JD, Strachan DM, McCloy JS, Jerden JL Jr (2016) Materials and processes for the effective capture and immobilization of radioiodine: a review. J Nucl Mater 470:307–326. https://doi.org/10.1016/j.jnucmat.2015.11.038

    Article  ADS  CAS  Google Scholar 

  3. Moore RC, Pearce CI, Morade JW, Chatterjee S, Levitskaia TG, Asmussen RM, Lawter AR, Neeway JJ, Qafoku NP, Rigali MJ, Saslow SA, Szecsody JE, Thallapally PK, Wang G, Freedman VL (2020) Iodine immobilization by materials through sorption and redox-driven processes: a literature review. Sci Total Environ 716:132820. https://doi.org/10.1016/j.scitotenv.2019.06.166

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Boukis N, Henrich E (1991) Two-step procedure for the iodine removal from nuclear fuel solutions. Radiochim Acta 55(1):37–42. https://doi.org/10.1524/ract.1991.55.1.37

    Article  CAS  Google Scholar 

  5. Krishnan U, Mandal D (2022) Experimental study of mass transfer of iodine vapor from air in sodium hydroxide solution in a packed column. Ind Eng Chem Res 61(23):8166–8176. https://doi.org/10.1021/acs.iecr.2c00069

    Article  CAS  Google Scholar 

  6. Soelberg NR, Garn TG, Greenhalgh MR, Law JD, Jubin R, Strachan DM, Thallapally PK (2013) Radioactive iodine and krypton control for nuclear fuel reprocessing facilities. Sci Technol Nucl Install 2013:702496. https://doi.org/10.1155/2013/702496

    Article  CAS  Google Scholar 

  7. Patent RU 2 346 346 C2 (2008) IPC G21F 9/02(2006.01) “Physchemin” silica aerogel-based sorbent for capturing volatile radioactive iodine species (In Russian).In: Kulyukhin S A, Mikheev N B, Kamenskaya A N, Konovalova N A, Rumer I A, Mizina L V, Tanashchuk N V, Krasavina E P. Applied by: The Institute of Physical Chemistry and Electrochemistry RAS (IPCE RAS), Kulyukhin S A–No RU2007106920 appl. 26.02.2007; publ, p 5

  8. Nenoff TM, Rodriguez MA, Soelberg NR, Chapman KW (2014) Silver-mordenite for radiologic gas capture from complex streams: dual catalytic CH3I decomposition and I confinement. Microporous Mesoporous Mater 200:297–303. https://doi.org/10.1016/j.micromeso.2014.04.041

    Article  CAS  Google Scholar 

  9. Obruchikov AV, Merkushkin AO, Zakatilova EI (2016) Composite silver-containing iodine sorbents based on high-porosity cellular ceramics. Glass Ceram 73(7–8):240–245. https://doi.org/10.1007/s10717-016-9865-0

    Article  CAS  Google Scholar 

  10. Asmussen RM, Turner J, Chong S, Riley BJ (2022) Review of recent developments in iodine wasteform production. Front Chem 10:1043653. https://doi.org/10.3389/fchem.2022.1043653

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pénélope R, Campayo L, Fournier M, Gossard A, Grandjean A (2022) Silver-phosphate glass matrix for iodine conditioning: from sorbent design to vitrification. J Nucl Mater 558:153352. https://doi.org/10.1016/j.jnucmat.2021.153352

    Article  CAS  Google Scholar 

  12. Bollinger DL, Erickson J, Bussey JM, McCloy JS (2022) Process optimization of caustic scrubber and iodine-129 immobilization in sodalite-based waste forms. MRS Adv 7(5–6):110–116. https://doi.org/10.1557/s43580-022-00229-y

    Article  ADS  CAS  Google Scholar 

  13. National Operator for Radioactive Waste Management. https://www.norao.ru Accessed 30 Aug 2023

  14. Federal law on radioactive waste management and on making amendments to particular legislative instruments of Russian Federation (2011) No 190-FZ (In Russian). http://www.cntr-nrs.gosnadzor.ru/about/AKTS/Oб%20oбpaщeнии%20c%20paдиoaктивными%20oтxoдaми%20и%20o%20внeceнии%20измeнeний%20в%20oтдeльныe%20зaкoнoдaтeльныe%20aкты..._Teкcт.pdf. Accessed 31 Aug. 2023

  15. Tsebakovskaya NS, Utkin SS, Kapyrin IV, Medyantsev NV, Shamina AV (2015) A review of foreign SNF and RW disposal practice (In Russian). Komtechprint, Moscow

  16. Sellin P, Leupin OX (2013) The use of clay as an engineered barrier in radioactive-waste management—a review. Clays Clay Miner 61(6):477–498. https://doi.org/10.1346/CCMN.2013.0610601

    Article  ADS  CAS  Google Scholar 

  17. Krupskaya VV, Zakusin SV, Lekhov VA, Dorzhieva OV, Belousov PE, Tyupina EA (2020) Buffer properties of bentonite barrier systems for radioactive waste isolation in geological repository in the Nizhnekanskiy Massif. Radioact Waste 1:35–55. https://doi.org/10.25283/2587-9707-2020-1-35-55

    Article  Google Scholar 

  18. Kaufhold S, Dohrmann R, Ufer K, Kober F (2018) Interactions of bentonite with metal and concrete from the FEBEX experiment: mineralogical and geochemical investigations of selected sampling sites. Clay Miner 53(4):745–763. https://doi.org/10.1180/clm.2018.54

    Article  ADS  CAS  Google Scholar 

  19. Krupskaya VV, Zakusin SV, Tyupina EA, Dorzhieva OV, Chernov MS, Bychkova Ya V (2019) Transformation of structure and adsorption properties of montmorillonite under thermochemical treatment. Geochem Int 57(3):314–330. https://doi.org/10.1134/S0016702919030066

    Article  CAS  Google Scholar 

  20. Pentrák M, Hronský V, Pálková H, Uhlík P, Komadel P, Madejová J (2018) Alteration of fine fraction of bentonite from Kopernica (Slovakia) under acid treatment: a combined XRD, FTIR, MAS NMR and AES study. Appl Clay Sci 163:204–213. https://doi.org/10.1016/j.clay.2018.07.028

    Article  CAS  Google Scholar 

  21. Jozefaciuk G, Bowanko G (2002) Effect of acid and alkali treatments on surface areas and adsorption energies of selected minerals. Clays Clay Miner 50(6):771–783. https://doi.org/10.1346/000986002762090308

    Article  ADS  CAS  Google Scholar 

  22. Morozov I, Zakusin S, Kozlov P, Zakusina O, Roshchin M, Chernov M, Boldyrev K, Zaitseva T, Tyupina E, Krupskaya V (2022) Bentonite-concrete interactions in engineered barrier systems during the isolation of radioactive waste based on the results of short-term laboratory experiments. Appl Sci 12(6):3074. https://doi.org/10.3390/app12063074

    Article  CAS  Google Scholar 

  23. Bauer A, Lanson B, Ferrage E, Emmerich K, Taubald H, Schild D, Veld B (2006) The fate of smectite in KOH solutions. Am Mineral 91:1313–1322. https://doi.org/10.2138/am.2006.2151

    Article  ADS  CAS  Google Scholar 

  24. Tyupina EA, Kozlov PP, Krupskaya VV (2023) Application of cement-based materials as a component of an engineered barrier system at geological disposal facilities for radioactive waste—a review. Energies 16(2):605. https://doi.org/10.3390/en16020605

    Article  CAS  Google Scholar 

  25. Savage D, Noy D, Mihara M (2002) Modelling the interaction of bentonite with hyperalkaline fluids. Appl Geochem 17(3):207–223. https://doi.org/10.1016/S0883-2927(01)00078-6

    Article  ADS  CAS  Google Scholar 

  26. Luckham PF, Rossi S (1999) The colloidal and rheological properties of bentonite suspensions. Adv Colloid Interface Sci 82(1–3):43–92. https://doi.org/10.1016/S0001-8686(99)00005-6

    Article  CAS  Google Scholar 

  27. Belousov P, Semenkova A, Egorova T, Romanchuk A, Zakusin S, Dorzhieva O, Tyupina E, Izosimova Y, Tolpeshta I, Chernov M, Krupskaya V (2019) Cesium sorption and desorption on glauconite, bentonite, zeolite and diatomite. Minerals 9(10):625. https://doi.org/10.3390/min9100625

    Article  ADS  CAS  Google Scholar 

  28. Durrant CB, Begg JD, Kersting AB, Zavarin M (2018) Cesium sorption reversibility and kinetics on illite, montmorillonite, and kaolinite. Sci Total Environ 610:511–520. https://doi.org/10.1016/j.scitotenv.2017.08.122

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Krupskaya VV, Zakusin SV, Tyupina EA, Chernov MS (2016) Features of cesium adsorption on bentonite barriers in solid radioactive waste disposal (In Russian). Min J 2:79–85. https://doi.org/10.17580/gzh.2016.02.16

    Article  CAS  Google Scholar 

  30. Siroux B, Beaucaire C, Tabarant M, Benedetti MF, Reiller PE (2017) Adsorption of strontium and caesium onto an Na-MX80 bentonite: experiments and building of a coherent thermodynamic modelling. Appl Geochem 87:167–175. https://doi.org/10.1016/j.apgeochem.2017.10.022

    Article  ADS  CAS  Google Scholar 

  31. Al Attar L, Bassam BAG (2018) Uptake of 137Cs and 85Sr onto thermally treated forms of bentonite. J Environ Radioact 193:36–43. https://doi.org/10.1016/j.jenvrad.2018.08.015

    Article  CAS  PubMed  Google Scholar 

  32. Mayordomo N, Alonso U, Missana T (2019) Effects of γ-alumina nanoparticles on strontium sorption in smectite: additive model approach. Appl Geochem 100:121–130. https://doi.org/10.1016/j.apgeochem.2018.11.012

    Article  ADS  CAS  Google Scholar 

  33. Hurel C, Marmier N (2010) Sorption of europium on a MX-80 bentonite sample: experimental and modelling results. J Radioanal Nucl Chem 284(1):225–230. https://doi.org/10.1007/s10967-010-0476-x

    Article  CAS  Google Scholar 

  34. Stammose D, Ly J, Pitsch H, Dolo J-M (1992) Sorption mechanisms of three actinides on a clayey mineral. Appl Clay Sci 7:225–238. https://doi.org/10.1016/0169-1317(92)90041-K

    Article  CAS  Google Scholar 

  35. Sabodina MN, Kalmykov SN, Sapozhnikov YuA, Zakharova EV (2006) Neptunium, plutonium and 137Cs sorption by bentonite clays and their speciation in pore waters. J Radioanal Nucl Chem 270(2):349–355. https://doi.org/10.1007/s10967-006-0356-6

    Article  CAS  Google Scholar 

  36. Mattigod SV, Serne RJ, Fryxell GE (2003) Selection and testing of "Getters" for adsorption of iodine-129 and technetium-99: a review. Available at https://www.osti.gov/biblio/15004678. Accessed 31 Aug 2023

  37. Sazarashi M, Ikeda Y, Seki R, Yoshikawa H (1994) Adsorption of I- ions on minerals for 129I waste management. J Nucl Sci Technol 31(6):620–622. https://doi.org/10.1080/18811248.1994.9735198

    Article  CAS  Google Scholar 

  38. Bruchertseifer H, Cripps R, Guentay S, Jaeckel B (2003) Analysis of iodine species in aqueous solutions. Anal Bioanal Chem 375(8):1107–1110. https://doi.org/10.1007/s00216-003-1779-3

    Article  CAS  PubMed  Google Scholar 

  39. Unno N, Minakami H, Kubo T, Fujimori K, Ishiwata I, Terada H, Saito S, Yamaguchi I, Kunugita N, Nakai A, Yoshimura Y (2012) Effect of the Fukushima nuclear power plant accident on radioiodine (131I) content in human breast milk. J Obstet Gynaecol Res 38(5):772–779. https://doi.org/10.1111/j.1447-0756.2011.01810.x

    Article  CAS  PubMed  Google Scholar 

  40. Stone MB, Stanford JB, Lyon JL, VanDerslice JA, Alder SC (2013) Childhood thyroid radioiodine exposure and subsequent infertility in the intermountain fallout cohort. Environ Health Perspect 121(1):79–84. https://doi.org/10.1289/ehp.1104231

    Article  PubMed  Google Scholar 

  41. Asmussen RM, Matyáš J, Qafoku NP, Kruger AA (2019) Silver-functionalized silica aerogels and their application in the removal of iodine from aqueous environments. J Hazard Mater 379:119364. https://doi.org/10.1016/j.jhazmat.2018.04.081

    Article  CAS  PubMed  Google Scholar 

  42. Karanfil T, Moro EC, Serkiz SM (2005) Development and testing of a silver chloride-impregnated activated carbon for aqueous removal and sequestration of iodide. Environ Technol 26(11):1255–1262. https://doi.org/10.1080/09593332608618595

    Article  CAS  PubMed  Google Scholar 

  43. Buzetzky D, Nagy NM, Kónya J (2020) Use of silver–bentonite in sorption of chloride and iodide ions. J Radioanal Nucl Chem 326:1795–1804. https://doi.org/10.1007/s10967-020-07457-2

    Article  CAS  Google Scholar 

  44. Yim SP, Lee JH, Choi HJ, Choi JW, Lee CK (2012) Transport of iodide ion in compacted bentonite containing Ag2O. In: Proceedings of the WM2012 conference, Phoenix, Arizona

  45. McKinney D, Hesterberg D (2007) Kinetics of AgI precipitation from AgCl as affected by background electrolyte. J Radioanal Nucl Chem 273(2):289–297. https://doi.org/10.1007/s10967-007-6849-0

    Article  CAS  Google Scholar 

  46. Bo A, Sarina S, Zheng Zh, Yang D, Liu H, Zhu H (2013) Removal of radioactive iodine from water using Ag2O grafted titanate nanolamina as efficient adsorbent. J Hazard Mater 246:199–205. https://doi.org/10.1016/j.jhazmat.2012.12.008

    Article  CAS  PubMed  Google Scholar 

  47. Mostafa M, Ramadan HE, El-Amir MA (2015) Sorption and desorption studies of radioiodine onto silver chloride via batch equilibration with its aqueous media. J Environ Rad 150:9–19. https://doi.org/10.1016/j.jenvrad.2015.07.022

    Article  CAS  Google Scholar 

  48. Li D, Kaplan DI, Price KA (2019) Iodine immobilization by silver-impregnated granular activated carbon in cementitious systems. J Environ Radioact 208–209:106017. https://doi.org/10.1016/j.jenvrad.2019.106017

    Article  CAS  PubMed  Google Scholar 

  49. Richard H, Karg V, Schönfeld T (1984) Sorbents for radioiodide on the basis of finely divided silver in porous materials. J Radioanal Nucl Chem 82(1):81–91. https://doi.org/10.1007/bf02227331

    Article  CAS  Google Scholar 

  50. Pearce C, Cordova E, Garcia W, Saslow SA, Cantrell KJ, Morad JW, Qafoku O, Matyáš J, Plymale AE, Chatterjee S, Kang J, Colon FC, Levitskaia TG, Rigali MJ, Szecsody JE, Heald SM, Balasubramanian M, Wang Sh, Sun DT, Queen WL, Bontchev R, Moore RC, Freedman VL (2020) Evaluation of materials for iodine and technetium immobilization through sorption and redox-driven processes. Sci Total Environ 716:136167. https://doi.org/10.1016/j.scitotenv.2019.136167

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Patent US4659477 (A) (1983) Fixation of anionic materials with a complexing agent. In: Macedo PB, Barkatt A. Applied by: Macedo PB, Litovitz TA–No US19830517472 19830728; publ, p 13

  52. Muir B, Andrunik D, Hyla Y, Bajda T (2017) The removal of molybdates and tungstates from aqueous solution by organo-smectites. Appl Clay Sci 136:8–17. https://doi.org/10.1016/j.clay.2016.11.006

    Article  CAS  Google Scholar 

  53. Patent US2010191033 A1 (2010) Adsorbent for radioelement-containing waste and method for fixing radioelement. In: Yamada H, Tamura K, Tanaka J, Ikoma T, Suetsugu Y, Moriyoshi Y, Watanabe Y. Applied by National institute for materials science–No US20100708735 20100219; publ, p 11

  54. Patent JP2015020101 (A) (2015) Iodine collecting material having radiation shielding capability. In: Akira S. Applied by Shimane University–No JP20130149118 20130718; publ, p 8

  55. Kulyukhin SA, Kamenskaya AN, Konovalova NA (2011) Chemistry of radioactive iodine in aqueous media: basic and applied aspects. Radiochemistry 53:123–141. https://doi.org/10.1134/S1066362211020020

    Article  CAS  Google Scholar 

  56. Lide D R (2005) CRC Handbook of Chemistry and Physics, Internet Version 2005. Available online http://www.hbcpnetbase.com. Accessed 31 Aug 2023

  57. Krausmann E, Drossinos Y (1999) A model of silver-iodine reactions in a light water reactor containment sump under severe accident conditions. J Nucl Mater 264:113–121. https://doi.org/10.1016/S0022-3115(98)00471-1

    Article  ADS  CAS  Google Scholar 

  58. Asmussen RM, Neeway JJ, Lawter AR, Wilson A, Qafoku NP (2016) Silver-based getters for 129I removal from low-activity waste. Radiochim Acta 104(12):905–913. https://doi.org/10.1515/ract-2016-2598

    Article  CAS  Google Scholar 

  59. Mattigod SV, Fryxell GE, Serne RJ, Parker KE (2003) Evaluation of novel getters for adsorption of radioiodine from groundwater and waste glass leachates. Radiochim Acta 91(9):539–546. https://doi.org/10.1524/ract.91.9.539.20001

    Article  CAS  Google Scholar 

  60. Mattigod SV, Fryxell G, Parker K, Kaplan D (2002) Novel functionalized ceramic getter materials for adsorption of radioiodine. MRS Online Proc Lib 757(II8):7. https://doi.org/10.1557/PROC-757-II8.7

    Article  Google Scholar 

  61. Amonette JE, Matyáš J (2017) Functionalized silica aerogels for gas-phase purification, sensing, and catalysis: a review. Microporous Mesoporous Mater 250:100–119. https://doi.org/10.1016/j.micromeso.2017.04.055

    Article  CAS  Google Scholar 

  62. Matyáš J, Fryxell G E, Busche B J (2011) Functionalised silica aerogels: Advanced materials to capture and immobilise radioactive iodine. In: Ceramic Materials for Energy Applications, vol 32, Issue 9. Wiley, Hoboken

  63. Mnasri N, Charnay C, De Ménorval L-S, Moussaoui Y, Elaloui E, Zajac J (2014) Silver nanoparticle-containing submicron-in-size mesoporous silica-based systems for iodine entrapment and immobilization from gas phase. Microporous Mesoporous Mater 196:305–313. https://doi.org/10.1016/j.micromeso.2014.05.029

    Article  CAS  Google Scholar 

  64. Chen Z, Qiao F, Liu W (2020) Influence of cleaning treatment on structure, optical and electrical properties of Ag/ZnSe microspheres prepared by silver mirror reaction. Vacuum 173:109110. https://doi.org/10.1016/j.vacuum.2019.109110

    Article  ADS  CAS  Google Scholar 

  65. Qu L, Dai L (2005) Novel silver nanostructures from silver mirror reaction on reactive substrates. J Phys Chem B 109(29):13985–13990. https://doi.org/10.1021/jp0515838

    Article  CAS  PubMed  Google Scholar 

  66. Aleksandrova TP, Vais AA, Masliy AI, Burmistrov VA, Gusev AA, Bagavieva SK (2014) Comparative evaluation of antimicrobial properties of sintepon with various silver-containing coatings. Chem Sustain Develop 22(4):407–411

    Google Scholar 

  67. Smolko VA, Antoshkina EG (2014) Kinetics of swelling of bentonite clay of Zyryanovka deposit (In Russian). Bulletin South Ural State Univ Metall 14(2):89–91

    Google Scholar 

  68. Tyupina EA, Pryadko AV, Merkushkin AO (2021) A technique for obtaining bentonite-based silver-containing sorbent for the uptake of radioiodine compounds (In Russian). Sorpchrom 21(1):26–32. https://doi.org/10.17308/sorpchrom.2021.21/3216

    Article  Google Scholar 

  69. Sohrabnezhad Sh, Rassa M, Mohammadi Dahanesari E (2016) Spectroscopic study of silver halides in montmorillonite and their antibacterial activity. J Photochem Photobiol B 163:150–155. https://doi.org/10.1016/j.jphotobiol.2016.08.018

    Article  CAS  PubMed  Google Scholar 

  70. Min S-H, Jang J-H, Kim J-Y, Kwon Y-U (2010) Development of white antibacterial pigment based on silver chloride nanoparticles and mesoporous silica and its polymer composite. Microporous Mesoporous Mater 128:19–25. https://doi.org/10.1016/j.micromeso.2009.07.020

    Article  CAS  Google Scholar 

  71. Naik B, Desai V, Kowshik M, Prasad VS, Fernando GF, Ghosh NN (2010) Synthesis of Ag/AgCl–mesoporous silica nanocomposites using a simple aqueous solution-based chemical method and a study of their antibacterial activity on E. coli. Particuology 9:243–247. https://doi.org/10.1016/j.partic.2010.12.001

    Article  CAS  Google Scholar 

  72. Tyupina EA, Pryadko AV (2023) Bentonite-based sorbent modified with silver chloride with precipitation technique for capturing anionic radioiodine species (In Russian). Sorpchrom 23(1):74–85. https://doi.org/10.17308/sorpchrom.2023.23/10995

    Article  CAS  Google Scholar 

  73. Patent RU 2 801 938 C1 (2023) IPC B01J 20/12 (2006.01) G21F 9/00 (2006.01) Silver-containing sorbent for anionic radioactive iodine species (In Russian). In: Tyupina EA, Pryadko AV, Merkushkin AO, Parshina PY. Applied by Federal State Budgetary Educational Institution of Higher Education Dmitry Mendeleev University of Chemical Technology of Russia (MUCTR)–No 2022119431, appl. 15.07.2022; publ, p 6

  74. Frob H, Bottcher H, Muller B, Winzer A (1993) Structural investigations of evaporated AgBr/Agl layers: new frontiers in silver halide imaging. J Imag Sci Technol 37(6):564–567

    Google Scholar 

  75. Kumar Y, Saxena SK, Venkatesh M, Dash A (2011) Studies on the adsorption of 125I on bromide coated silver rods for the preparation of 125I-seeds for brachytherapy applications. J Radioanal Nucl Chem 290(1):109–114. https://doi.org/10.1007/s10967-011-1152-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by Russian Science Foundation, project number 22-29-00607 «Developing of silver-containing bentonite-based sorbent for uptake of anionic forms of radioactive iodine in radioactive waste repositories».

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Tyupina E A and Pryadko A V; writing—original draft preparation: Praydko A V; writing—review and editing, supervision, project administration, funding acquisition: Tyupina E.A. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Ekaterina A. Tyupina.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyupina, E.A., Pryadko, A.V. Use of silver-containing sorbents in anionic species of radioactive iodine management in nuclear industry and the methods of obtaining them. J Radioanal Nucl Chem 333, 599–613 (2024). https://doi.org/10.1007/s10967-023-09306-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09306-4

Keywords

Navigation