Skip to main content
Log in

Adsorption of uranium(VI) in aqueous solution by tetraphenyldithiodiphosphonate

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Tetraphenyldithiodiphosphonate is synthesized by polymerization precipitation. The P = S bond of the material has strong polarity, which is conducive to improving the electron mobility of the complex and inhibiting the accumulation between molecules. The synthesized tetraphenyldithiodiphosphonate is characterized by FT-IR, SEM, XPS and XRD. In addition, the pseudo-second-order kinetic model is used to simulate the experimental data well, and the adsorption process conforms to the Langmuir isotherm model. Thermodynamic studies of adsorption have shown that the adsorption process is essentially a spontaneous endothermic process. At room temperature, tetraphenyldithiodiphosphonate demonstrates a maximum adsorption capacity for uranium(VI) reaching 398.8 mg g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data underlying this article will be shared on reasonable request to the corresponding author.

References

  1. Dahake R, Tiwari P, Bansiwal A (2021) Multicycle adsorption and desorption for recovery of U(VI) from aqueous solution using oxime modified zeolite-A. J Radioanal Nucl Chem 327:133–142

    Article  CAS  Google Scholar 

  2. Xie X, Wang Y, Xiong Z, Li H, Yao C (2020) Highly efficient removal of uranium(VI) from aqueous solution using poly(cyclotriphosphazene-co-polyethyleneimine) microspheres. J Radioanal Nucl Chem 326:1867–1877

    Article  CAS  Google Scholar 

  3. Lv Z, Wang H, Chen C, Yang S, Chen L, Alsaedi A, Hayat T (2019) Enhanced removal of uranium(VI) from aqueous solution by a novel Mg-MOF-74-derived porous MgO/carbon adsorbent. J Colloid Interface Sci 537:A1–A10

    Article  CAS  PubMed  Google Scholar 

  4. Zhu K, Chen C, Xu M, Chen K, Tan X, Wakeel M, Alharbi NS (2018) In situ carbothermal reduction synthesis of Fe nanocrystals embedded into N-doped carbon nanospheres for highly efficient U(VI) adsorption and reduction. Chem Eng J 331:395–405

    Article  CAS  Google Scholar 

  5. Sun Y, Wang X, Ai Y, Yu Z, Huang W, Chen C, Wan X (2017) Interaction of sulfonated graphene oxide with U(VI) studied by spectroscopic analysis and theoretical calculations. Chem Eng J 310:292–299

    Article  CAS  Google Scholar 

  6. Liu X, Xu X, Sun J, Alsaed A, Hayat T, Li J, Wang X (2018) Insight into the impact of interaction between attapulgite and graphene oxide on the adsorption of U(VI). Chem Eng J 343:217–224

    Article  CAS  Google Scholar 

  7. Han M, Kong L, Hu X, Chen D, Xiong X, Zhang H, Ruan Y (2018) Phase migration and transformation of uranium in mineralized immobilization by wasted bio-hydroxyapatite. J Clean Prod 197:886–894

    Article  CAS  Google Scholar 

  8. Tatarchuk T, Shyichuk A, Mironyuk I, Naushad M (2019) A review on removal of uranium(VI) ions using titanium dioxide based sorbents. J Mol Liq 293:111563

    Article  CAS  Google Scholar 

  9. Mei D, Liu L, Yan B (2023) Adsorption of uranium(VI) by metal-organic frameworks and covalent-organic frameworks from water. Coord Chem Rev 475:214917

    Article  CAS  Google Scholar 

  10. Tang M, Chen J, Wang P, Wang C, Ao Y (2018) Highly efficient adsorption of uranium(VI) from aqueous solution by a novel adsorbent: titanium phosphate nanotubes. Environ Sci Nano 5(10):2304–2314

    Article  CAS  Google Scholar 

  11. Prusty S, Somu P, Sahoo JK, Panda D, Sahoo SK, Rao KS (2022) Adsorptive sequestration of noxious uranium(VI) from water resources: a comprehensive review. Chemosphere 308:136278

    Article  CAS  PubMed  Google Scholar 

  12. Wang XL, Li Y, Huang J, Zhou YZ, Li BL, Liu DB (2019) Efficiency and mechanism of adsorption of low concentration uranium in water by extracellular polymeric substances. J Environ Radioact 197:81–89

    Article  CAS  PubMed  Google Scholar 

  13. Danko B, Dybczyński RS, Samczyński Z, Gajda D, Herdzik-Koniecko I, Zakrzewska-Kołtuniewicz G, Kulisa K (2017) Ion exchange investigation for recovery of uranium from acidic pregnant leach solutions. Nukleonika 62(3):213–221

    Article  CAS  Google Scholar 

  14. Chen L, Zhao D, Chen S, Wang X, Chen C (2016) One-step fabrication of amino functionalized magnetic graphene oxide composite for uranium(VI) removal. J Colloid Interface Sci 472:99–107

    Article  CAS  PubMed  Google Scholar 

  15. Masakazu K, Nicolas P, Wooyong U, Jon C, O’Day Peggy A (2014) Influence of phosphate and silica on U(VI) precipitation from acidic and neutralized wastewaters. Environ Sci Technol 48(11):6097–6610

    Article  Google Scholar 

  16. Zhou L, Wang Y, Zou H, Liang X, Zeng K, Liu Z, Adesina AA (2016) Biosorption characteristics of uranium(VI) and thorium(IV) ions from aqueous solution using CaCl2-modified Giant Kelp biomass. J Radioanal Nucl Chem 307(1):635–644

    Article  CAS  Google Scholar 

  17. Khawassek YM, Masoud AM, Taha MH, Hussein AEM (2018) Kinetics and thermodynamics of uranium ion adsorption from waste solution using Amberjet 1200 H as cation exchanger. J Radioanal Nucl Chem 315:493–502

    Article  CAS  Google Scholar 

  18. Saleh TA, Tuzen M, Sarı A (2017) Polyethylenimine modified activated carbon as novel magnetic adsorbent for the removal of uranium from aqueous solution. Chem Eng Res Des 117:218–227

    Article  CAS  Google Scholar 

  19. Wang Z, Huang FY, Liu Y, Yi FC, Feng Y, Luo Y, Wang ZY (2022) Adsorption properties and mechanism of uranium by three biomass materials. Radiochim Acta 110(1):23–35

    Article  CAS  Google Scholar 

  20. Amesh P, Venkatesan KA, Suneesh AS, Gupta DK, Ravindran TR (2021) Adsorption of uranium by diethylenetriamine functionalized magnetic mesoporous silica. Environ Nanotechnol Monit Manag 16:100583

    CAS  Google Scholar 

  21. Sun Z, Chen D, Chen B, Kong L, Su M (2018) Enhanced uranium(VI) adsorption by chitosan modified phosphate rock. Colloid Surf A 547:141–147

    Article  CAS  Google Scholar 

  22. Tan J, Wang Y, Liu N, Liu M (2018) Adsorption of uranium(VI) from aqueous solution by tetraphenylimidodiphosphinate. J Radioanal Nucl Chem 315:119–126

    Article  CAS  Google Scholar 

  23. Ma Z, Wang Y, Liu M, Luo Y, Xie X, Xiong Z (2019) Highly efficient uranium(VI) removal from aqueous solution using poly(cyclotriphosphazene-co-4,4′-diaminodiphenyl-ether) crosslinked microspheres. J Radioanal Nucl Chem 321:1093–1107

    Article  CAS  Google Scholar 

  24. Kou Y, Zhang L, Liu B, Zhu L, Duan T (2020) Phosphonate modified MoS2 composite material for effective adsorption of uranium(VI) in aqueous solution. J Radioanal Nucl Chem 323:641–649

    Article  CAS  Google Scholar 

  25. Ye T, Liu Z, Cai Z (2020) Adsorption of uranium(VI) from aqueous solution by novel dibutyl imide chelating resin. J Radioanal Nucl Chem 323(1):223–232

    Article  CAS  Google Scholar 

  26. Onche EU (2019) Soft processing for the introduction of metal dopants to metal sulfide semiconductor thin films and nanoparticles. The University of Manchester (United Kingdom)

  27. Oyetunde TT (2011) Novel precursors for chalcogenide materials. The University of Manchester (United Kingdom)

  28. Zafar S, Khalid N, Mirza ML (2015) Sequestering of thorium ions from aqueous media on rice husk: equilibrium, kinetic and thermodynamic studies. Radiochim Acta 103(5):385–395

    Article  CAS  Google Scholar 

  29. Ouyang Y, Zhao L, Deng M, Yang P, Peng G (2023) Preparation of diethylenetriamine-functionalized thiosulfate intercalated ZnNiAl-LDHs and its removal behavior and mechanism of U(VI). Chem Eng J 452:139486

    Article  CAS  Google Scholar 

  30. Guan Y, Mao YH, Wei D, Wang XX, Zhu PX (2013) Adsorption thermodynamics and kinetics of disperse dye on poly (p-phenylene benzobisoxazole) fiber pretreated with polyphosphoric acid. Korean J Chem Eng 30:1810–1818

    Article  CAS  Google Scholar 

  31. Kaynar UH, Şabikoğlu İ (2018) Adsorption of thorium(IV) by amorphous silica; response surface modelling and optimization. J Radioanal Nucl Chem 318:823–834

    Article  CAS  Google Scholar 

  32. Zhong X, Sun Y, Zhang Z, Dai Y, Wang Y, Liu Y, Liu Y (2019) A new hydrothermal cross-linking ion-imprinted chitosan for high-efficiency uranium removal. J Radioanal Nucl Chem 322(2):901–911

    Article  CAS  Google Scholar 

  33. Niu CP, Zhang CR, Liu X, Liang RP, Qiu JD (2023) Synthesis of propenone-linked covalent organic frameworks via Claisen–Schmidt reaction for photocatalytic removal of uranium. Nat Commun 14(1):4420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rahman N, Varshney P, Nasir M (2021) Synthesis and characterization of polydopamine/hydrous zirconium oxide composite and its efficiency for the removal of uranium(VI) from water. Environ Nanotechnol Monit Manag 15:100458

    CAS  Google Scholar 

  35. Younes A, Ali JS, Duda A, Alliot C, Huclier-Markai S, Wang J, Alexandratos SD (2021) Uptake and removal of uranium by and from human teeth. Chem Res Toxicol 34(3):880–891

    Article  CAS  PubMed  Google Scholar 

  36. Asgari Fard Z, Sobhani A, Monsef R, Salavati-Niasari M (2019) Lead carbonate hydroxide nanostructures: a new hydrothermal synthesis in the presence of ethylenediamine and hydrazine and investigation photocatalytic behavior. J Mater Sci Mater Electron 30:20947–20957

    Article  CAS  Google Scholar 

  37. Liu P, Yu Q, Zhang X, Chen J, Xue Y, Ma F (2021) Removal of U(VI) from aqueous solution using AO-artificial zeolite. J Radioanal Nucl Chem 327:39–47

    Article  CAS  Google Scholar 

  38. Pengfei Y, Yuanxin X, Na Y, Yong A (2020) Preparation of uniform highly dispersed Mg–Al-LDHs and their adsorption performance for chloride ions. Ind Eng Chem Res 59(22):10697–10704

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous reviewers for their constructive comments. The authors gratefully acknowledge support from the National Natural Science Foundation of China (51803088), Scientific Research Fund of Hunan Education Department (17C1360).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanfei Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Wang, Y., Xu, Y. et al. Adsorption of uranium(VI) in aqueous solution by tetraphenyldithiodiphosphonate. J Radioanal Nucl Chem 333, 357–373 (2024). https://doi.org/10.1007/s10967-023-09266-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09266-9

Keywords

Navigation