Skip to main content
Log in

Baseline study on radiological and mineralogical investigations of heavy mineral depositions on the south–west coast of India

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Pristine depositions of beach sediments containing heavy minerals (HM) along the shorelines of Mangalore, south–west coast of India is reported in the study. Primordial radionuclide concentrations in the beach sediments collected were determined by high purity germanium (HPGe) gamma spectrometry method. The mineral identification and counting were performed using polarizing microscope. Geometric mean values (GM) [Geometric Standard Deviation (GSD)] of concentrations of 40K, 232Th and 226Ra are obtained to be 139 (2), 482 (5) and 110 (4) Bq kg−1 respectively and total heavy mineral weight percentage (TM%) of Monazite, Zircon, Ilmenite and Lithic fragments are obtained to be 0.17 (3.5), 0.51 (2.9), 5.3 (3.2) and 2.3 (2.5)% respectively. Seasonal variation studies and statistical analysis of the data are also performed to examine correlations between the origins of the radionuclides and elevated percentage of HM in these sediment depositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ali MA, Krishnan S, Banerjee DC (2001) Beach and inland heavy mineral sand investigations and deposits in India—an overview. EARFAM Vol 13. Special Volume.

  2. Ramola RC, Prasad M (2020) Significance of thoron measurements in indoor environment. J Environ Radioact 225:106453

    Article  CAS  PubMed  Google Scholar 

  3. Gajapathi RR, Sahoo P, Niroj PK (2015) Heavy mineral sand deposits of Orissa. https://www.amd.gov.in/app16/contentpage.aspx?link=502&parentid=500.

  4. Presley JBJ, Trefry RH, Shokes F (1980) Heavy metal inputs to Mississippi delta sediments. A historical view. Water Air Soil Pollut 13(4):481–494. https://doi.org/10.1007/BF02191849

    Article  CAS  Google Scholar 

  5. James PM, Syvitski. (2003) Supply and flux of sediment along hydrological path ways: research of the 21st century. Glob Planet Change 39:1–11. https://doi.org/10.1016/S0921-8181(03)00008-0

    Article  Google Scholar 

  6. Shetty A, Jayappa KS (2021) Proxies for sediment transport patterns and environmental characteristics: a case study of Karnataka coast. India J Sediment Environ 6:107–120. https://doi.org/10.1007/s43217-020-00038-z

    Article  Google Scholar 

  7. Huh CA, Chen W, Hsu FH, Su CC, Chiu JK, Lin S, Liu CS, Huang BJ (2011) Modern sedimentation in the Taiwan Strait: rates and source-to-sink pathways elucidated from radionuclides and particle size distribution. Cont Shelf Res 31:47–63. https://doi.org/10.1016/j.csr.2010.11.002

    Article  Google Scholar 

  8. Joseph FD, Mark BG (1991) Radioactivity of Heavy mineral sands as an Indicator of coastal sand transport processes. J Coast Res 7:189–201

    Google Scholar 

  9. Khandaker MU, Asaduzzaman K, Sulaiman AF, Bradley DA, Isinkaye MO (2018) Elevated concentrations of naturally occurring radionuclides in heavy mineral-rich beach sands of Langkawi Island. Malays Mar Pollut Bull 127:654–663

    Article  Google Scholar 

  10. Alam MN, Chowdhury MI, Kamal M, Ghose S, Islam MN, Mustafa MN, Miah MMH, Ansary MM (1999) The 226Ra, 232Th and 40K activities in beach sand minerals and beach soils of Cox‘s Bazar. Bangladesh J Environ Radioact 46:243–250

    Article  CAS  Google Scholar 

  11. Singh S, Rani A, Mahajan RK (2005) 226Ra, 232Th and 40K analysis in soil samples from some areas of Punjab and Himachal Pradesh, India using gamma ray spectrometry. Radiat Meas 39:431–439

    Article  CAS  Google Scholar 

  12. Shetty T, Somashekarppa HM, Sudeep Kumara K, Yashodhara I, Mohan MP, Karunakara N, Sahoo BK, Gaware JJ, Sapra BK (2019) A walk-in type 222Rn chamber for calibration of radon and progeny measuring devices and inter-comparison measurements. Radiat Prot Dosim. https://doi.org/10.1093/rpd/ncz188

    Article  Google Scholar 

  13. Kandari T, Prasad M, Pant P, Semwal P, Bourai AA, Ramola RC (2018) Study of radon flux and natural radionuclides (226Ra, 232Th and 40K) in the Main Boundary Thrust region of Garhwal Himalaya. Acta Geophys 66:1243–1248

    Article  Google Scholar 

  14. Prasad M, Ranga V, Kumar GA, Ramola RC (2020) Radiological impact assessment of soil and groundwater of Himalayan regions in Uttarakhand. India J Radioanal Nucl Chem 323(3):1269–1282

    Article  CAS  Google Scholar 

  15. Kumar A, Singh P, Semwal P, Kuldeep S, Prasad M, Ramola RC (2021) Study of primordial radionuclides and radon/thoron exhalation rates in Bageshwar region of Kumaun Himalaya. India J Radioanal Nucl Chem 328:1361–1367

    Article  CAS  Google Scholar 

  16. Trilochana S, Somashekarappa HM, Sudeep KK, Mayya YS, Karunakara N (2019) CFD based simulation and experimental verification of 222Rn distribution in a walk-in type calibration chamber. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-019-06957-0

    Article  Google Scholar 

  17. Suresh GM, Ravisankar R, Rajalakshmi A, Sivakumar S, Chandrasekaran A, Pream AD (2014) Measurements of natural gamma radiation in beach sediments of north eastcoast of Tamilnadu, India by gamma ray spectrometry with multivariate statistical approach. J Radiat Res Appl Sci 7:7–17

    Google Scholar 

  18. Ramola RC, Prasad M, Rawat M, Dangwal A, Gusain GS, Mishra R, Sahoo SK, Tokonami S (2015) Comparative study of various techniques for environmental radon, thoron and progeny measurements. Radiat Prot Dosim 167(1–3):22–28

    Article  CAS  Google Scholar 

  19. Kandari T, Aswal S, Prasad M, Pant P, Bourai AA, Ramola RC (2016) Study of radiation exposure due to radon, thoron and their progeny in the indoor environment of Rajpur region of Uttarakhand Himalaya. Radiat Prot Dosim 171(2):204–207

    Article  CAS  Google Scholar 

  20. Prasad M, Bossew P, Anil Kumar G, Ramola RC (2018) Dose assessment from the exposure to attached and unattached progeny of radon and thoron in indoor environment. Acta Geophys 66:1187–1194

    Article  Google Scholar 

  21. Panwar P, Prasad M, Ramola RC (2021) Study of soil-gas and indoor radon concentration in a test village at Tehri Garhwal. India J Radioanal Nucl Chem 330:1383–1391

    Article  CAS  Google Scholar 

  22. Radhakrishna AP, Somashekarappa HM, Narayana Y, Siddappa K (1993) A new natural background radiation area on the southwest Coast of India. Health Phys 65(4):390–395

    Article  CAS  PubMed  Google Scholar 

  23. Trilochana S, Ateeth S, Jayappa KS, Somashekarappa HM (2016) Preliminary reports on radiological studies of Tannirbhavi beach sands of Southwest coast of India. In: Proceedings of national symposium for radiation protection (NSRP-20).

  24. Darwish A-A, Sudeep K, Mohan MP, Karunakara N (2019) Gamma Dose rates in the high background radiation area of Mangalore region. India Radiat Prot Dosim 184:1–4

    Google Scholar 

  25. Sundararajan M, Bhat KH, Babu N, Janaki MEK, Mohan Das PN (2009) Characterization studies on ilmenite of Ullal and Suratkal along Karnataka Coastline, West Coast of India. J Miner Mater Charact Eng. 8:479–493

    Google Scholar 

  26. Freitas AC, Alencar AS (2004) Gamma dose-rates and distribution of natural radionuclides in sand beaches—Ilha Grande, Southeastern Brazil. J Environ Radioact 75:211–223

    Article  CAS  PubMed  Google Scholar 

  27. Papadopoulos A, Koroneos A, Christofides G, Papadopoulou L, Tzifas I, Stoulos S (2016) Assessment of gamma radiation exposure of beach sands in highly touristic areas associated with plutonic rocks of the Atticocycladic zone (Greece). J Environ Radioact 162:235–243

    Article  PubMed  Google Scholar 

  28. Abdel-Halim AA, Saleh IH (2016) Radiological characterization of beach sediments along the Alexandria–Rosetta coasts of Egypt. J. Taibah Univ. Sci. 10(2):212–220

    Article  Google Scholar 

  29. Sasaki T, Rajib M, Akiyoshi M, Kobayashi T, Takagi I, Fujii T, Zaman MM (2015) Laboratory enrichment of radioactive assemblages and estimation of thorium and uranium radioactivity in fractions separated from Placer Sands in Southeast Bangladesh. Nat Resour Res 24(2):209–220

    Article  CAS  Google Scholar 

  30. Papadopoulos A, Koroneos A, Christofides G, Stoulos S (2014) Natural radioactivity distribution and gamma radiation exposure of beach sands close to Maronia and Samothraki plutons. NE Greece Geol Balk 43(1–3):99–107

    Google Scholar 

  31. United Nations Scientific Committee on the Effects of Atomic Radiation (2000) (UNSCEAR-2000), Report to the General Assembly, Vol. 1 Sources.

  32. Shetty A, Jayappa KS (2020) Seasonal variation in longshore sediment transport rate and its impact on sediment budget along the wave-dominated Karnataka Coast. India. J. Earth Syst. Sci 129:1–14. https://doi.org/10.1007/s12040-020-01504-y

    Article  Google Scholar 

  33. Jayappa KS, Vijaya Kumar GT, Subrahmanya KR (2003) Influence of coastal structures on the beaches of southern Karnataka. India J Coast Res 19(2):389–408

    Google Scholar 

  34. CWC (2018) Integrated Hydrological Data Book. Hydrological Data Directorate, Central Water Commission, Government of India. http://cwc.gov.in/publications?title=integrated+hydr. Accessed 07 Oct 2019

  35. Radhakrishna BP, Vaidyanadhan R (1994) Geology of Karnataka. Bangalore J. Geol. Soc. India. pp 9–17

  36. Abbas MH, Vishwanadham KD, Krishna Rao SV (1991) Resource map of Udupi and Dakshina Kannada Districts, Karnataka. Geological Survey of India, Hyderabad

  37. Agrawal DP, Guzder SJ (1972) Quaternary studies on the west coast of India: preliminary observation. Palaeobotanist 21(2):216–222

    Google Scholar 

  38. Kankara RS, Ramana MMV, Rajeevan M (2018) National Assessment of Shoreline changes along IndianCoast—A status report for 1990–2016 NCCR Pub

  39. Hegde AG, Verma PC, Rao DD (2009) Standard protocol for evaluation of environmental transfer factors around NPP sites. Health Safety & Environment Group. BARC--2008/E/023

  40. Grosz AE, Berquist CR. Jr, Fischler CT (1990) A procedure for assessing heavy mineral resources potential. VIMS Books and Book Chapters. 104. https://scholarworks.wm.edu/vimsbooks/104

  41. Mohan MP, D’Souza RS, Rashmi Nayak S, Kamath SS, Trilochana S, Sudeep Kumara K, Yashodhara I, Mayya YS, Karunakara N (2018) Influence of rainfall on atmospheric deposition fluxes of 7Be and 210Pb in Mangaluru (Mangalore) at the Southwest Coast of India. Atmos. Environ. 202:281–295

    Article  Google Scholar 

  42. Karunakara N, Shetty T, Sahoo BK, Kumara KS, Sapra BK, Mayya YS (2020) An innovative technique of harvesting soil gas as a highly efficient source of 222Rn for calibration applications in a walk-in type chamber: Part -1. Sci Rep 10:1654

    Article  Google Scholar 

  43. Attallah MF, Abdel-Monem AM (2014) Estimation of environmental impacts of NORM from some raw materials used in ceramic industry. Radiochemistry 56(3):332–338

    Article  CAS  Google Scholar 

  44. Attallah MF, El-Afifi EM, Awwad NS, Aly HF (2013) Comparative study on the radioactivity of TE-NORM in different components of oil separator tanks. Radiochim Acta 101(1):57–65

    Article  CAS  Google Scholar 

  45. Attallah MF, Hilal MA, Moussa SI (2017) Quantification of some elements of nuclear and industrial interest from zircon mineral using neutron activation analysis and passive gamma-ray spectroscopy. Appl Radiat Isot 128:224–230

    Article  CAS  PubMed  Google Scholar 

  46. Attallah MF, Abdelbary HM, Elsofany EA, Mohamed YT, Abo-Aly MM (2020) Radiation safety and environmental impact assessment of sludge TENORM waste produced from petroleum industry in Egypt. Process Saf Environ Prot 142(c):308–316

    Article  CAS  Google Scholar 

  47. United Nations Scientific Committee on the Effects of Atomic Radiation. 2008. (UNSCEAR-2008), Report to the General Assembly, Vol 1 Sources.

  48. Baratta EJ (1990) Radon, Radium and Uranium in drinking water. Lewis Publisher, Washington, pp 203–213

    Google Scholar 

  49. Otwoma D, Patel JP, Bartolol S, Mustapha AO (2013) Estimation of annual effective dose and radiation hazards due to natural radionuclides in mount homa, southwestern kenya. Radiat Prot Dosim 155(4):497–504

    Article  CAS  Google Scholar 

  50. Yadav M, Prasad M, Joshi V, Gusain GS, Ramola RC (2016) A comparative study of radium content and radon exhalation rate from soil samples using active and passive techniques. Radiat Prot Dosim 171(2):254–256

    Article  CAS  Google Scholar 

  51. Yadav M, Rawat M, Dangwal A, Mukesh P, Gusain GS, Ramola RC (2014) Levels and effects of natural radionuclides in soil samples of Garhwal Himalaya. J Radioanal Nucl Chem 302:869–873

    Article  CAS  Google Scholar 

  52. Al-Harbi WR, AlZahrani JH, Abbady AGE (2011) Assessment of radiation hazard indices from granite rocks of the Southeastern Arabian Shield. Kingd Saudi Arab AJBAS 5(6):672–682

    CAS  Google Scholar 

  53. Asgharizadeh F, Abbasi A, Hochaghani O, Gooya ES (2012) Natural radioactivity in granite stones used as building materials in Iran. Radiat Prot Dosim 149(3):321–326

    Article  CAS  Google Scholar 

  54. Beretka J, Mathew PJ (1985) Natural radioactivity of Australian building materials, industrial wastes and by products. Health Phys 48:87–95

    Article  CAS  PubMed  Google Scholar 

  55. Ahmed MT, Minhaj UM, Mohammad R, Shaheen M, Sarkar YH, Chowdhury Q, Azrina AA, Mohammad FHK, Nazmul H, Fahad H, Faysal AA, Shaik MS (2023) Heavy minerals identification and extraction along coastal sediments using placer mining technique. J Sediment Environ 8:81–95

    Article  Google Scholar 

  56. Ramasamy V, Sundarrajan M, Suresh G, Paramasivam K, Meenakshisundaram V (2014) Role of light and heavy minerals on natural radioactivity level of high background radiation area, Kerala, India. Appl Radiat Isot 85:1–10

    Article  CAS  PubMed  Google Scholar 

  57. Örgün Y, Altınsoy N, Şahin SY, Güngör Y, Gültekin AH, Karahan G, Karacık Z (2007) Natural and anthropogenic radionuclides in rocks and beach sands from Ezine region (Çanakkale), Western Anatolia. Turkey Appl Radiat Isot 65(6):739–747

    Article  PubMed  Google Scholar 

  58. Alam MN, Chowdhury MI, Kamal M, Ghose S, Islam MN, Mustafa MN, Miah MMH, Ansary MM (1999) The 226Ra, 232Th and 40K activities in beach sand minerals and beach soils of Cox’s Bazar. Bangladesh J Environ Radioact 46(2):243–250

    Article  CAS  Google Scholar 

  59. Mehedi HASM, Ismail H, Aminur RM, Mohammad NZ, Pradip KB, Sha AM (2022) Chemistry and mineralogy of Zr- and Ti-rich minerals sourced from Cox’s Bazar beach placer deposits, Bangladesh: Implication of resources processing and evaluation. Ore Geol. Rev. 141:104687

    Article  Google Scholar 

  60. Veiga R, Sanches N, Anjos RM, Macario K, Bastos J, Iguatemy M, Aguiar JG, Santos AMA, Mosquera B, Carvalho C, Baptista Filho M, Umisedo NK (2006) Measurement of natural radioactivity in Brazilian beach sands. Radiat Meas 41(2):189–196

    Article  CAS  Google Scholar 

  61. Maria AM, Da S (1979) Provenance of heavy minerals in beach sands, southeastern Brazil: from Rio Grande to Chui (Rio Grande do Sul State). Sediment Geol 24(1–2):133–148

    Google Scholar 

  62. Mahmoud MAM, Abd El-Halim ES (2021) Natural radioactivity and radiological hazards of Sharm El Loul Beach, South of Marsa Alam City. Egypt J Radiat Nucl Appl 6:269–275

    Google Scholar 

  63. Esraa SE, Abdel-Moneim AM, Ahmed G, Sahar MAEB (2023) Sedimentological and mineralogical fingerprint of the beach sediments, Western Mediterranean Coast. Egypt Iraqi Geol J 56:102–125

    Article  Google Scholar 

  64. Vassas C, Pourcelot L, Vella C, Carpéna J, Pupin JP, Bouisset P, Guillot L (2006) Mechanisms of enrichment of natural radioactivity along the beaches of the Camargue. France J Environ Radioact 91(3):146–159

    Article  CAS  PubMed  Google Scholar 

  65. Papadopoulos A, Christofides G, Koroneos A, Stoulos S (2014) Natural radioactivity distribution and gamma radiation exposure of beach sands from Sithonia Peninsula. Open Geosci 6(2):229–242

    Article  Google Scholar 

  66. Meijer RJ, James IR, Jennings PJ, Koeyers JE (2001) Cluster analysis of radionuclide concentrations in beach sand. Appl Radiat Isot 54(3):535–542

    Article  PubMed  Google Scholar 

  67. Liu X, Lin W (2018) Natural radioactivity in the beach sand and soil along the coastline of Guangxi Province. China Mar Pollut Bull 135:446–450

    Article  CAS  PubMed  Google Scholar 

  68. Sun L, Xie Y, Kang C, Chi Y, Wu P, Wei Z, Li S, Zhao Q, Liu S (2022) The composition of heavy minerals of the sandy lands Northeast China and their implications for tracing detrital sources. Plos one 17(10):e0276494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Järvelill JI, Koch R, Raukas A, Vaasma T (2018) Hazardous radioactivity levels and heavy mineral concentrations in beach sediments of Lake Peipsi, northeastern Estonia. Geologos 24(1):1–12

    Article  Google Scholar 

Download references

Acknowledgements

The suggestions of Dr. Manish Joshi, Scientific Officer, Radiological Physics and Advisory Division, BARC with regard to the statistical analysis is gratefully acknowledged. Authors profusely thank Dr. Swaroop Acharya and Mr. Ranjith Shetty, Centre for Application of Radioisotopes and Radiation Technology (CARRT), Mangalore University for their assistance in sampling and processing work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trilochana Shetty.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare. All co-authors have seen and agree with the contents of the manuscript and there is no financial interest to report. We certify that the submission is original work and is not under review at any other publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shetty, T., Shetty, A., Anil Kumar, A. et al. Baseline study on radiological and mineralogical investigations of heavy mineral depositions on the south–west coast of India. J Radioanal Nucl Chem 332, 4977–4991 (2023). https://doi.org/10.1007/s10967-023-09238-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09238-z

Keywords

Navigation