Skip to main content
Log in

Preparation of 3D ethylcellulose-based electret fiber aerogel for simulated radioactive aerosol purification

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Electret fiber filtration materials prepared by electrostatic spinning and corona polarization have drawn significant interest in treating radioactive aerosols. In this study, a three-dimensional biomass-based electret nanofiber aerogel material with high dust capacity, high filtration efficiency and low-pressure drop was created by pore structure regulation. The results showed that aerogels with good charge capture and storage ability were obtained by regulating the concentration of tert-butanol and ethylcellulose fiber suspension, and the pre-freezing temperature. The initial surface potential and stable surface potential increased from 0.85 and 0.05 kV to 1.37 and 0.15 kV respectively. Furthermore, the purification time was reduced from 44 to 15 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Adams S, Odonkor S (2021) Status, opportunities, and challenges of nuclear power development in Sub-Saharan Africa: the case of Ghana. Prog Nucl Energy 138:103816. https://doi.org/10.1016/j.pnucene.2021.103816

    Article  CAS  Google Scholar 

  2. Kim SI, Lee HY, Jung WC, Song JS (2021) Evaluation OF internal exposure to radioactive aerosol generated from plasma melting system using the bidas code. Radiat Prot Dosimetry 194:9–17. https://doi.org/10.1093/rpd/ncab061

    Article  CAS  PubMed  Google Scholar 

  3. Lee HY, Yang KT, An JY et al (2022) Evaluation of workers’ internal exposure because of inhalation of radioactive aerosols in a plasma melting facility by using IMBA and TAURUS codes. J Radioanal Nucl Chem 331:4397–4404. https://doi.org/10.1007/s10967-022-08512-w

    Article  CAS  Google Scholar 

  4. Lee RE (1972) The size of suspended particulate matter in air: size distributions of ambient aerosols must be studied in order to determine their effects on the environment. Science 178:567–575. https://doi.org/10.1126/science.178.4061.567

    Article  PubMed  Google Scholar 

  5. Zosky GR (2023) Air pollution and respiratory health—Do we really need more evidence. Respirology 28:513–514. https://doi.org/10.1111/resp.14490

    Article  PubMed  Google Scholar 

  6. Bayram H, Rastgeldi Dogan T, Şahin ÜA, Akdis CA (2023) Environmental and health hazards by massive earthquakes. Allergy 78:2081–2084. https://doi.org/10.1111/all.15736

    Article  PubMed  Google Scholar 

  7. Shukla SD, O’Toole RF (2020) Exposure to bushfire and biomass smoke and the risk of bacterial and viral lung infection. Respirology 25:1121–1122. https://doi.org/10.1111/resp.13908

    Article  PubMed  Google Scholar 

  8. Li S, Guo Y (2018) Hazardous haze in Asia and breathing problems: editorial. Respirology 23:883–884. https://doi.org/10.1111/resp.13336

    Article  PubMed  Google Scholar 

  9. Levy JI, Biton L, Hopke PK et al (2017) A cost-benefit analysis of a pellet boiler with electrostatic precipitator versus conventional biomass technology: a case study of an institutional boiler in Syracuse, New York. Environ Res 156:312–319. https://doi.org/10.1016/j.envres.2017.03.052

    Article  CAS  PubMed  Google Scholar 

  10. Xie B, Li S, Jin H et al (2018) Analysis of the performance of a novel dust collector combining cyclone separator and cartridge filter. Powder Technol 339:695–701. https://doi.org/10.1016/j.powtec.2018.07.103

    Article  CAS  Google Scholar 

  11. De Castro BJC, Sartim R, Guerra VG, Aguiar ML (2020) Hybrid air filters: a review of the main equipment configurations and results. Process Saf Environ Prot 144:193–207. https://doi.org/10.1016/j.psep.2020.07.025

    Article  CAS  Google Scholar 

  12. Jaworek A, Sobczyk AT, Krupa A et al (2019) Hybrid electrostatic filtration systems for fly ash particles emission control. A Rev Separat Purifi Technol 213:283–302. https://doi.org/10.1016/j.seppur.2018.12.011

    Article  CAS  Google Scholar 

  13. Lee SE, Hutter B, Goldsmith S (1994) Comparisons of mechanical melt-blown filters and electrostatically enhanced split-fiber filters for cabin air filtration applications. Part Sci Technol 12:399–409. https://doi.org/10.1080/02726359408906665

    Article  CAS  Google Scholar 

  14. Chen J-P, Chen S-C, Wu X-Q et al (2021) Multilevel structured TPU/PS/PA-6 composite membrane for high-efficiency airborne particles capture: preparation, performance evaluation and mechanism insights. J Membr Sci 633:119392. https://doi.org/10.1016/j.memsci.2021.119392

    Article  CAS  Google Scholar 

  15. Lee J, Kim J (2020) Material properties influencing the charge decay of electret filters and their impact on filtration performance. Polymers 12:721. https://doi.org/10.3390/polym12030721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shu H, Xiangchao C, Peng L, Hui G (2017) Study on electret technology of air filtration material. IOP Conf Ser Earth Environ Sci 100:012110. https://doi.org/10.1088/1755-1315/100/1/012110

    Article  Google Scholar 

  17. Yuan Y, Zhao J, Dong C et al (2019) Improved Electret Properties of poly(vinylidene fluoride)/lithium niobate nanocomposites for applications in air filters. Macromol Mater Eng 304:1900003. https://doi.org/10.1002/mame.201900003

    Article  CAS  Google Scholar 

  18. Owkis B, Motyl E (2001) Electret properties of polypropylene fabrics. J Electrostat 51–52:232–238. https://doi.org/10.1016/s0304-3886(01)00053-5

    Article  Google Scholar 

  19. Lee K-S, Hasolli N, Lee J-R et al (2020) Dust loading performance of a non-electret HVAC filter module in the presence of an external electric field. Sep Purif Technol 250:117204. https://doi.org/10.1016/j.seppur.2020.117204

    Article  CAS  Google Scholar 

  20. Zong D, Zhang X, Yin X et al (2022) Electrospun fibrous sponges: principle, fabrication, and applications. Adv Fiber Mater 4:1434–1462. https://doi.org/10.1007/s42765-022-00202-2

    Article  Google Scholar 

  21. Pang C, You H, Liang L et al (2023) Bamboo pulp-based electret fiber aerogel with enhanced electret performance by P-phenylenediamine modification for simulated radioactive aerosol purification in confined spaces. Colloids Surf A 658:130502. https://doi.org/10.1016/j.colsurfa.2022.130502

    Article  CAS  Google Scholar 

  22. Deuber F, Mousavi S, Federer L et al (2018) Exploration of ultralight nanofiber aerogels as particle filters: capacity and efficiency. ACS Appl Mater Interfaces 10:9069–9076. https://doi.org/10.1021/acsami.8b00455

    Article  CAS  PubMed  Google Scholar 

  23. Sambaer W, Zatloukal M, Kimmer D (2012) 3D air filtration modeling for nanofiber based filters in the ultrafine particle size range. Chem Eng Sci 82:299–311. https://doi.org/10.1016/j.ces.2012.07.031

    Article  CAS  Google Scholar 

  24. Maury-Ramirez A, Nikkanen J-P, Honkanen M et al (2014) TiO2 coatings synthesized by liquid flame spray and low temperature sol–gel technologies on autoclaved aerated concrete for air-purifying purposes. Mater Charact 87:74–85. https://doi.org/10.1016/j.matchar.2013.10.025

    Article  CAS  Google Scholar 

  25. Liang J, Cai Z, Li L et al (2014) Scalable and facile preparation of graphene aerogel for air purification. RSC Adv 4:4843. https://doi.org/10.1039/c3ra45147j

    Article  CAS  Google Scholar 

  26. Qian H, Fang Y, Wu K et al (2021) Air filtration improvement of konjac glucomannan-based aerogel air filters through physical structure design. Int J Low Carbon Technol 16:867–872. https://doi.org/10.1093/ijlct/ctab011

    Article  CAS  Google Scholar 

  27. Sun J, Zhou Y, Zhou J, Yang H (2023) Filtration capacity and radiation cooling of cellulose aerogel derived from natural regenerated cellulose fibers. J Nat Fibers 20:2181276. https://doi.org/10.1080/15440478.2023.2181276

    Article  CAS  Google Scholar 

  28. Qiao S, Yan J, Wang Z et al (2023) Tough and lightweight polyimide/cellulose nanofiber aerogels with hierarchical porous structures as an efficient air purifier. Sep Purif Technol 325:124668. https://doi.org/10.1016/j.seppur.2023.124668

    Article  CAS  Google Scholar 

  29. Zhou L, Zhai S, Chen Y, Xu Z (2019) Anisotropic cellulose nanofibers/polyvinyl alcohol/graphene aerogels fabricated by directional freeze-drying as effective oil adsorbents. Polymers 11:712. https://doi.org/10.3390/polym11040712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang Y, Zhou T, He S et al (2019) Flame-retardant polyvinyl alcohol/cellulose nanofibers hybrid carbon aerogel by freeze drying with ultra-low phosphorus. Appl Surf Sci 497:143775. https://doi.org/10.1016/j.apsusc.2019.143775

    Article  CAS  Google Scholar 

  31. Zhang T, Zhang Y, Wang X et al (2018) Characterization of the nano-cellulose aerogel from mixing CNF and CNC with different ratio. Mater Lett 229:103–106. https://doi.org/10.1016/j.matlet.2018.06.101

    Article  CAS  Google Scholar 

  32. Jiménez-Saelices C, Seantier B, Cathala B, Grohens Y (2017) Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties. Carbohyd Polym 157:105–113. https://doi.org/10.1016/j.carbpol.2016.09.068

    Article  CAS  Google Scholar 

  33. Wu P, Zhang B, Yu Z et al (2019) Anisotropic polyimide aerogels fabricated by directional freezing. J Appl Polym Sci 136:47179. https://doi.org/10.1002/app.47179

    Article  CAS  Google Scholar 

  34. Zhang G, Chen H, Yang S et al (2018) Frozen slurry-based laminated object manufacturing to fabricate porous ceramic with oriented lamellar structure. J Eur Ceram Soc 38:4014–4019. https://doi.org/10.1016/j.jeurceramsoc.2018.04.032

    Article  CAS  Google Scholar 

  35. Ni X, Ke F, Xiao M et al (2016) The control of ice crystal growth and effect on porous structure of konjac glucomannan-based aerogels. Int J Biol Macromol 92:1130–1135. https://doi.org/10.1016/j.ijbiomac.2016.08.020

    Article  CAS  PubMed  Google Scholar 

  36. Zhang M, Li M, Xu Q, et al (2022) Nanocellulose-based aerogels with devisable structure and tunable properties via ice-template induced self-assembly. Industrial crops and products 179. https://doi.org/10.1016/j.indcrop.2022.114701

  37. Wang X, Zhang Y, Jiang H et al (2017) Tert-butyl alcohol used to fabricate nano-cellulose aerogels via freeze-drying technology. Mater Res Exp 4:065006. https://doi.org/10.1088/2053-1591/aa72bc

    Article  CAS  Google Scholar 

  38. Kasraian K, Deluca PP (1995) Thermal analysis of the tertiary butyl alcohol-water system and its implications on freeze-drying. Pharm Res 12:484–490. https://doi.org/10.1023/a:1016233408831

    Article  CAS  PubMed  Google Scholar 

  39. Deogekar S, Islam MR, Picu RC (2019) Parameters controlling the strength of stochastic fibrous materials. Int J Solids Struct 168:194–202. https://doi.org/10.1016/j.ijsolstr.2019.03.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pang C, Wang H, Lin X (2021) Ultralight ethyl cellulose-based electret fiber membrane for low-resistance and high-efficient capture of PM2.5. Colloids Surfaces A Physicochem Eng Aspects 630:127643. https://doi.org/10.1016/j.colsurfa.2021.127643

  41. Ke S-C, Wang T-C, Wong M-S, Gopal NO (2006) Low Temperature kinetics and energetics of the electron and hole traps in irradiated TiO 2 nanoparticles as revealed by EPR spectroscopy. J Phys Chem B 110:11628–11634. https://doi.org/10.1021/jp0612578

    Article  CAS  PubMed  Google Scholar 

  42. Chelbi S, Djouadi D, Chelouche A et al (2020) Effects of Ti-precursor concentration and annealing temperature on structural and morphological properties of TiO2 nano-aerogels synthesized in supercritical ethanol. SN Appl Sci 2:872. https://doi.org/10.1007/s42452-020-2633-3

    Article  CAS  Google Scholar 

  43. Linn B, Tuukka N, Deeptanshu S et al (2021) Seaweed-derived alginate-cellulose nanofiber aerogel for insulation applications. ACS Appl Mater Interfaces 13:34899–34909. https://doi.org/10.1021/acsami.1c07954

    Article  CAS  Google Scholar 

  44. Liu C, Wan L, Li Q et al (2021) Ice-templated anisotropic flame-resistant boron nitride aerogels enhanced through surface modification and cellulose nanofibrils. ACS Appl Polym Mater 3:1358–1367. https://doi.org/10.1021/acsapm.0c01219

    Article  CAS  Google Scholar 

  45. Lasalle A, Guizard C, Leloup J et al (2012) Ice-templating of alumina suspensions: effect of supercooling and crystal growth during the initial freezing regime. J Am Ceram Soc 95:799–804. https://doi.org/10.1111/j.1551-2916.2011.04993.x

    Article  CAS  Google Scholar 

  46. Habib J, Annika S, Tomasz J et al (2012) Ice templating soft matter: fundamental principles and fabrication approaches to tailor pore structure and morphology and their biomedical applications. Adv Mater. https://doi.org/10.1002/adma.202100091

    Article  Google Scholar 

  47. Huiming X, Gangjin C, Xumin C, Zhi C (2017) A flexible electret membrane with persistent electrostatic effect and resistance to harsh environment for energy harvesting. Sci Rep 7:8443. https://doi.org/10.1038/s41598-017-07747-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support from State Key Laboratory of NBC Protection for Civilian, China (SKLNBC2021-21), and Engineering Research Center of Biomass Materials, Ministry of Education.

Author information

Authors and Affiliations

Authors

Contributions

MY: Conceptualization, Methodology, Investigation, Formal analysis, Data curation, Writing-original draft, Writing-review and editing. CP: Review and editing. SL: Investigation and Validation. XL: Writing-review and editing. YZ: Writing-review, Funding acquisition and Project administration. ZL: Supervision, Funding acquisition, Conceptualization.

Corresponding authors

Correspondence to Yaping Zhang or Zhanguo Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Pang, C., Lei, S. et al. Preparation of 3D ethylcellulose-based electret fiber aerogel for simulated radioactive aerosol purification. J Radioanal Nucl Chem 333, 481–493 (2024). https://doi.org/10.1007/s10967-023-09227-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09227-2

Keywords

Navigation