Skip to main content
Log in

Preparation and characterization of electrospun cellulose acetate/poly(ethylene oxide) fiber membrane for air filtration

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Air pollution is one of the most serious environmental problems that humans are experiencing. Herein, a sandwich-structured fiber nonwoven composite for air filtration was developed by covering both sides of electrospun cellulose acetate (CA)/poly(ethylene oxide) (PEO) fiber membrane with nonwoven fabric. The relationship between the formability of CA/PEO fiber membrane and the concentration of CA/PEO solution was investigated, and the structure and performance of the membrane were studied. When the solution concentration was higher than the entanglement concentration (Ce), a fiber membrane with a bead structure gradually transitioning to a bead-free structure was formed. The filtration performance of the composite was affected by the structure of the fiber membrane. At an airflow velocity of 85 L/min, the quality factor and filtration efficiency of the composite composed of a small amount of bead-structured fiber membrane were 0.01338 Pa−1 and 98.12%, respectively, while those of two-layer nonwoven fabric were 0.00496 Pa−1 and 4.14%, respectively. This proves that CA/PEO fiber membrane can be a potential candidate material for air filtration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Yan D, Kong Y, Jiang P, Huang R, Ye B (2021) How do socioeconomic factors influence urban PM2.5 pollution in China? Empirical analysis from the perspective of spatiotemporal disequilibrium. Sci Total Environ 761:143266. https://doi.org/10.1016/j.scitotenv.2020.143266

    Article  CAS  PubMed  Google Scholar 

  2. Dong Q, Lin Y, Huang J, Chen Z (2020) Has urbanization accelerated PM2.5 emissions? An empirical analysis with cross-country data. China Econ Rev 59:101381. https://doi.org/10.1016/j.chieco.2019.101381

    Article  Google Scholar 

  3. Sharma A, Kumar SR, Katiyar VK, Gopinath P (2021) Graphene oxide/silver nanoparticle (GO/AgNP) impregnated polyacrylonitrile nanofibers for potential application in air filtration. Nano-Struct Nano-Objects 26:100708. https://doi.org/10.1016/j.nanoso.2021.100708

    Article  CAS  Google Scholar 

  4. Zhang J, Cheng H, Wang D, Zhu Y, Yang C, Shen Y, Yu J, Li Y, Xu S, Zhang S, Song X, Zhou Y, Chen J, Jiang J, Fan L, Wang C, Hao K (2021) Chronic exposure to PM2.5 nitrate, sulfate, and ammonium causes respiratory system impairments in mice. Environ Sci Technol 55:3081–3090. https://doi.org/10.1021/acs.est.0c05814

    Article  CAS  PubMed  Google Scholar 

  5. You Y, Chen F, Qian J, Yan Q, Chen Z (2020) Nonhazardous electrospun biopolymer nanofibrous membrane for antibacterial filter. Nano 15:2050085. https://doi.org/10.1142/S179329202050085X

    Article  CAS  Google Scholar 

  6. Yang L, Li C, Tang X (2020) The impact of PM2.5 on the host defense of respiratory system. Front Cell Dev Biol 8:91. https://doi.org/10.3389/fcell.2020.00091

    Article  PubMed  PubMed Central  Google Scholar 

  7. Boogaard H, Walker K, Cohen AJ (2019) Air pollution: the emergence of a major global health risk factor. Int Health 11:417–421. https://doi.org/10.1093/inthealth/ihz078

    Article  PubMed  Google Scholar 

  8. Xu Y, Li X, Xiang H-F, Zhang Q-Q, Wang X-X, Yu M, Hao L-Y, Long Y-Z (2020) Large-scale preparation of polymer nanofibers for air filtration by a new multineedle electrospinning device. J Nanomater 2020:4965438. https://doi.org/10.1155/2020/4965438

    Article  CAS  Google Scholar 

  9. Vazquez B, Vasquez H, Lozano K (2012) Preparation and characterization of polyvinylidene fluoride nanofibrous membranes by forcespinning™. Polym Eng Sci 52(10):2260–2265. https://doi.org/10.1002/pen.23169

    Article  CAS  Google Scholar 

  10. Zhang J, Gong S, Wang C, Jeong D-Y, Wang ZL, Ren K (2019) Biodegradable electrospun poly(lactic acid) nanofibers for effective PM2.5 removal. Macromol Mater Eng 304:1900259

    Article  CAS  Google Scholar 

  11. Liu Y, Park M, Ding B, Kim J, El-Newehy M, Al-Deyab SS, Kim H-Y (2015) Facile electrospun Polyacrylonitrile/poly (acrylic acid) nanofibrous membranes for high efficiency particulate air filtration. Fiber Polym 16:629–633. https://doi.org/10.1007/s12221-015-0629-1

    Article  CAS  Google Scholar 

  12. Wsoo MA, Shahir S, Bohari SPM, Nayan NHM, Razak SIA (2020) A review on the properties of electrospun cellulose acetate and its application in drug delivery systems: a new perspective. Carbohyd Res 491:107978. https://doi.org/10.1016/j.carres.2020.107978

    Article  CAS  Google Scholar 

  13. Ali M, Jahan Z, Sher F, Niazi MBK, Kakar SJ (2021) Gul S (2021) Nano architectured cues as sustainable membranes for ultrafiltration in blood hemodialysis. Mat Sci Eng C-Mater 128:112260. https://doi.org/10.1016/j.msec.2021.112260

    Article  CAS  Google Scholar 

  14. Zhang X, Wang B, Qin X, Ye S, Shi Y, Feng Y, Han W, Liu C, Shen C (2020) Cellulose acetate monolith with hierarchical micro/nano-porous structure showing superior hydrophobicity for oil/water separation. Carbohyd Polym 241:116361. https://doi.org/10.1016/j.carbpol.2020.116361

    Article  CAS  Google Scholar 

  15. Nicosia A, Keppler T, Müller FA, Vazquez B, Ravegnani F, Monticelli P, Belosi F (2016) Cellulose acetate nanofiber electrospun on nylon substrate as novel composite matrix for efficient, heat-resistant, air filters. Chem Eng Sci 153:284–294. https://doi.org/10.1016/j.ces.2016.07.017

    Article  CAS  Google Scholar 

  16. Chattopadhyay S, Chattopadhyay S, Hatton TA, Rutledge GC (2016) Aerosol filtration using electrospun cellulose acetate fibers. J Mater Sci 51:204–217

    Article  CAS  Google Scholar 

  17. Zhang L, Hsieh Y-L (2008) Ultra-fine cellulose acetate/poly(ethylene oxide) bicomponent fibers. Carbohyd Polym 71:196–207. https://doi.org/10.1016/j.carbpol.2007.05.031

    Article  CAS  Google Scholar 

  18. Gutierrez-Gonzalez J, Garcia-Cela E, Magan N, Rahatekar SS (2020) Electrospinning alginate/polyethylene oxide and curcumin composite nanofibers. Mater Lett 270:127662. https://doi.org/10.1016/j.matlet.2020.127662

    Article  CAS  Google Scholar 

  19. Klossner RR, Queen HA, Coughlin AJ, Krause WE (2008) Correlation of chitosan’s rheological properties and its ability to electrospin. Biomacromol 9:2947–2953. https://doi.org/10.1021/bm800738u

    Article  CAS  Google Scholar 

  20. Li B, Huang C, Yang X (2017) Preparation and characterization of electrospun wool keratin/polyethylene oxide nanofibers for air filtration applications. Dig J Nanomater Bios 12:293–301

    Google Scholar 

  21. Atanase LI, Lerch JP, Căprărescu S, Iurciuc CE, Riess G (2017) Micellization of pH-sensitive poly(butadiene)-block-poly(2 vinylpyridine)-block-poly(ethylene oxide) triblock copolymers: Complex formation with anionic surfactants. J Appl Polym Sci 134(38):45313. https://doi.org/10.1002/app.45313

    Article  CAS  Google Scholar 

  22. Sandu T, Chiriac AL, Tsyntsarski B, Stoycheva I, Căprărescu S, Damian CM, Iordache TV, Pătroi D, Marinescu V, Sarbu A (2021) Advanced hybrid membranes for efficient nickel retention from simulated wastewater. Polym Int 70(6):866–876. https://doi.org/10.1002/pi.6183

    Article  CAS  Google Scholar 

  23. Căprărescu S, Zgârian RG, Tihan GT, Purcar V, Totu EE, Modrogan C, Chiriac A-L, Nicolae CA (2020) Biopolymeric membrane enriched with chitosan and silver for metallic ions removal. Polymers 12(8):1792. https://doi.org/10.3390/polym12081792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sandu T, Sârbu A, Damian CM, Marin A, Vulpe S, Budinova T, Yardim MF, Sirkecioglu A (2014) Preparation and characterization of membranes obtained from blends of acrylonitrile copolymers with poly(vinyl alcohol). Appl Polym Sci 131(21):41013. https://doi.org/10.1002/app.41013

    Article  CAS  Google Scholar 

  25. Zamel D, Hassanin AH, Ellethy R, Singer G, Abdelmoneim A (2019) Novel bacteria-immobilized cellulose acetate/poly(ethylene oxide) nanofibrous membrane for wastewater treatment. Sci Rep 9:18994. https://doi.org/10.1038/s41598-019-55265-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Broumand A, Emam-Djomeh Z, Khodaiyan F, Mirzakhanlouei S, Davoodi D, Moosavi-Movahedi AA (2015) Nano-web structures constructed with a cellulose acetate/lithium chloride/polyethylene oxide hybrid: modeling, fabrication and characterization. Carbohyd Polym 115:760–767. https://doi.org/10.1016/j.carbpol.2014.06.055

    Article  CAS  Google Scholar 

  27. Li B, Yang X (2020) Rutin-loaded cellulose acetate/poly(ethylene oxide) fiber membrane fabricated by electrospinning: a bioactive material. Mat Sci Eng C-Mater 109:110601. https://doi.org/10.1016/j.msec.2019.110601

    Article  CAS  Google Scholar 

  28. Chen GQ, Kanehashi S, Doherty CM, Hill AJ, Kentish SE (2015) Water vapor permeation through cellulose acetate membranes and its impact upon membrane separation performance for natural gas purification. J Membrane Sci 487:249–255. https://doi.org/10.1016/j.memsci.2015.03.074

    Article  CAS  Google Scholar 

  29. Wan H, Wang N, Yang J, Si Y, Chen K, Ding B, Sun G, El-Newehy M, Al-Deyab SS, Yu J (2014) Hierarchically structured polysulfone/titania fibrous membranes with enhanced air filtration performance. J Colloid Interface Sci 417:18–26. https://doi.org/10.1016/j.jcis.2013.11.009

    Article  CAS  PubMed  Google Scholar 

  30. Koski A, Yim K, Shivkumar S (2004) Effect of molecular weight on fibrous PVA produced by electrospinning. Mater Lett 58:493–497. https://doi.org/10.1016/S0167-577X(03)00532-9

    Article  CAS  Google Scholar 

  31. Rasouli M, Pirsalami S, Zebarjad SM (2020) Study on the formation and structural evolution of bead-on-string in electrospun polysulfone mats. Polym Int 69:822–832. https://doi.org/10.1002/pi.6021

    Article  CAS  Google Scholar 

  32. McKee MG, Wilkes GL, Colby RH, Long TE (2004) Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters. Macromolecules 37:1760–1767. https://doi.org/10.1021/ma035689h

    Article  CAS  Google Scholar 

  33. Fei P, Liao L, Cheng B, Song J (2017) Quantitative analysis of cellulose acetate with a high degree of substitution by FTIR and its application. Anal Methods 9:6194–6201. https://doi.org/10.1039/c7ay02165h

    Article  CAS  Google Scholar 

  34. Sim LH, Gan SN, Chan CH, Yahya R (2010) ATR-FTIR studies on ion interaction of lithium perchlorate in polyacrylate/poly(ethylene oxide) blends. Spectrochim Acta A 76:287–292. https://doi.org/10.1016/j.saa.2009.09.031

    Article  CAS  Google Scholar 

  35. Liu L, Gong D, Bratasz L, Zhu Z, Wang C (2019) Degradation markers and plasticizer loss of cellulose acetate films during ageing. Polym Degrad Stabil 168:108952. https://doi.org/10.1016/j.polymdegradstab.2019.108952

    Article  CAS  Google Scholar 

  36. Menazea AA (2020) One-Pot Pulsed Laser Ablation route assisted copper oxide nanoparticles doped in PEO/PVP blend for the electrical conductivity enhancement. J Mater Res Technol 9:2412–2422. https://doi.org/10.1016/j.jmrt.2019.12.073

    Article  CAS  Google Scholar 

  37. Abdelrazek EM, Abdelghany AM, Badr SI, Morsi MA (2017) Morphological, thermal and electrical properties of (PEO/PVP)/Au nanocomposite before and after gamma-irradiation. J Res Updates Polym Sci 6:45–54. https://doi.org/10.6000/1929-5995.2017.06.02.3

    Article  CAS  Google Scholar 

  38. Asvar Z, Mirzaei E, Azarpira N, Geramizadeh B, Fadaie M (2017) Evaluation of electrospinning parameters on the tensile strength and suture retention strength of polycaprolactone nanofibrous scaffolds through surface response methodology. J Mech Behav Biomed 75:369–378. https://doi.org/10.1016/j.jmbbm.2017.08.004

    Article  CAS  Google Scholar 

  39. Al-Attabi R, Morsi Y, Schütz JA, Dumée LF (2019) One-pot synthesis of catalytic molybdenum based nanocomposite nano-fiber membranes for aerosol air remediation. Sci Total Environ 647:725–733. https://doi.org/10.1016/j.scitotenv.2018.08.050

    Article  CAS  PubMed  Google Scholar 

  40. Huang Z-X, Liu X, Zhang X, Wong S-C, Chase GG, Qu J-P, Baji A (2017) Electrospun polyvinylidene fluoride containing nanoscale graphite platelets as electret membrane and its application in air filtration under extreme environment. Polymer 131:143–150. https://doi.org/10.1016/j.polymer.2017.10.033

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (No. 2014-37) and the Technology Innovation Foundation of National Engineering Laboratory for Modern Silk.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [BL]; Methodology: [BL]; Formal analysis and investigation: [BL]; Validation and Data curation: [BL]; Writing—original draft preparation: [BL]; Writing—review and editing: [BL], [XY]; Resources: [XY]; Supervision: [XY].

Corresponding author

Correspondence to Xuhong Yang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Yang, X. Preparation and characterization of electrospun cellulose acetate/poly(ethylene oxide) fiber membrane for air filtration. Polym. Bull. 80, 4841–4858 (2023). https://doi.org/10.1007/s00289-022-04262-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04262-7

Keywords

Navigation