Skip to main content
Log in

Using a multistandard color chart guide for digital cameras to detect total uranium in drinking water using arsenazo III: an approach

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The present study developed a multistandard color chart for detecting uranium (U) by arsenazo III using digital cameras with color tool measurements and compared it with conventional methods. The color chart is red to dark red as monochromatic for cameras. The detection limit is 5 ng/mL using a preconcentration factor of 100, which is well below WHO guidelines. The digital cameras showed lower bias and better trueness compared to the conventional methods. This provides an advantage in portability, ease of analysis, and no need for high-end instruments/radiochemical laboratories for U analysis in drinking water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Meinders AJ, Meinders AE (2010) Nederlands tijdschrift voor geneeskunde. Ned Tijdschr Geneeskd 154:534–536

    Google Scholar 

  2. Popkin BM, D’Anci KE, Rosenberg IH (2010) Water, hydration, and health. Nutr Rev 68:439–458. https://doi.org/10.1111/j.1753-4887.2010.00304.x

    Article  PubMed  Google Scholar 

  3. Baskaran KV (2015) Ingestion dose and health impact assessment of natural radionuclides (238 & 234 U, 226 Ra, 210 Po, 228 Ra, 40 K) to the residents of HBRA—Tamil Nadu. SRM University, India by market basket and duplicate diet studies

    Google Scholar 

  4. Keith S, Faroon O, Roney N, Scinicariello F, Wilbur S, Ingerman L, Llados F, Plewak D, Wohlers D, Diamond G (2013) Toxicological Profile for Uranium. Atlanta

  5. WHO (2017) Guidelines for drinking-water quality, 4th edition, incorporating the 1st addendum, World Health Organization

  6. Brindha K, Elango L (2013) Occurrence of uranium in groundwater of a shallow granitic aquifer and its suitability for domestic use in southern India. J Radioanal Nucl Chem 295:357–367. https://doi.org/10.1007/s10967-012-2090-6

    Article  CAS  Google Scholar 

  7. Boryło A (2013) Determination of uranium isotopes in environmental samples. J Radioanal Nucl Chem 295:621–631. https://doi.org/10.1007/s10967-012-1900-1

    Article  CAS  Google Scholar 

  8. Yoon YY, Cho SY, Lee KY et al (2013) Radiochemical determination of uranium and radium isotope in natural water using liquid scintillation counter. J Radioanal Nucl Chem 296:397–402. https://doi.org/10.1007/s10967-012-2024-3

    Article  CAS  Google Scholar 

  9. Saha A, Sanyal K, Rawat N et al (2017) Selective micellar extraction of ultratrace levels of uranium in aqueous samples by task specific ionic liquid followed by its detection employing total reflection X-ray fluorescence spectrometry. Anal Chem 89:10422–10430. https://doi.org/10.1021/acs.analchem.7b02427

    Article  CAS  PubMed  Google Scholar 

  10. Al-Muqrin A, El-Sharkawy A, Abdellah WM (2018) Uranium content in groundwater by laser fluorimetry; method validation and dose assessment. J Radiol Prot 38:1140. https://doi.org/10.1088/1361-6498/aad71e

    Article  CAS  PubMed  Google Scholar 

  11. Sar SK, Diwan V, Biswas S et al (2018) Study of uranium level in groundwater of Balod district of Chhattisgarh state, India and assessment of health risk. Hum Ecol Risk Assess Int J 24:691–698. https://doi.org/10.1080/10807039.2017.1397498

    Article  CAS  Google Scholar 

  12. Charalambous C, Aletrari M, Piera P et al (2013) Uranium levels in Cypriot groundwater samples determined by ICP-MS and α-spectroscopy. J Environ Radioact 116:187–192. https://doi.org/10.1016/j.jenvrad.2012.10.008

    Article  CAS  PubMed  Google Scholar 

  13. Khan MH, Warwick P, Evans N (2006) Spectrophotometric determination of uranium with arsenazo-III in perchloric acid. Chemosphere 63:1165–1169. https://doi.org/10.1016/j.chemosphere.2005.09.060

    Article  CAS  PubMed  Google Scholar 

  14. Jauberty L, Drogat N, Decossas JL et al (2013) Optimization of the arsenazo-III method for the determination of uranium in water and plant samples. Talanta 115:751–754. https://doi.org/10.1016/j.talanta.2013.06.046

    Article  CAS  PubMed  Google Scholar 

  15. Liang Y, He Y (2016) Arsenazo III-functionalized gold nanoparticles for photometric determination of uranyl ion. Microchim Acta 183:407–413. https://doi.org/10.1007/s00604-015-1659-5

    Article  CAS  Google Scholar 

  16. Safavi A, Bagheri M (2005) A novel optical sensor for uranium determination. Anal Chim Acta 530:55–60. https://doi.org/10.1016/j.aca.2004.08.063

    Article  CAS  Google Scholar 

  17. Kalyan Y, Pandey AK, Naidu GRK, Reddy AVR (2009) Membrane optode for uranium(VI) ions preconcentration and quantification based on a synergistic combination of 4-(2-thiazolylazo)-resorcinol with 8-hydroxyquinaldine. Spectrochim Acta A Mol Biomol Spectrosc 74:1235–1241. https://doi.org/10.1016/j.saa.2009.09.045

    Article  CAS  PubMed  Google Scholar 

  18. Chen X, Mei Q, Yu L et al (2018) Rapid and on-site detection of uranyl ions via ratiometric fluorescence signals based on a smartphone platform. ACS Appl Mater Interfaces 10:42225–42232. https://doi.org/10.1021/acsami.8b13765

    Article  CAS  PubMed  Google Scholar 

  19. Abo Dena AS, Bayoumi EE (2018) Lab-on-paper optical sensor for smartphone-based quantitative estimation of uranyl ions. J Radioanal Nucl Chem 318:1439–1445. https://doi.org/10.1007/s10967-018-6189-2

    Article  CAS  Google Scholar 

  20. Baskaran KV (2021) Digital camera analysis of dichlorvos by phloroglucinol and quantitate with standard colour chart in environmental water matrices—an approach. Indian J Chem A 60A:959–965

    CAS  Google Scholar 

  21. Baskaran KV, Desai C (2022) One-time standard colour references analysis of hexavalent chromium by 1,5-diphenylcarbazide in environmental water matrices using camera-based approach. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2022.2034799

    Article  Google Scholar 

  22. Rezazadeh M, Seidi S, Lid M et al (2019) The modern role of smartphones in analytical chemistry. TrAC Trends Analyt Chem 118:548–555. https://doi.org/10.1016/j.trac.2019.06.019

    Article  CAS  Google Scholar 

  23. Fan Y, Li J, Guo Y et al (2021) Digital image colorimetry on smartphone for chemical analysis: a review. Measurement 171:108829. https://doi.org/10.1016/j.measurement.2020.108829

    Article  Google Scholar 

  24. Strachnov V, Valkovic V, Zeisler R, Dekner R (1991) Report on the Intercomparison Run IAEA-312: 226 Ra. Th and U in Soil, Vienna

    Google Scholar 

  25. Pérez-Bustamante JA, Delgado FP (1971) The extraction and spectrophotometric determination of sexavalent uranium with arsenazo III in aqueous-organic media. Analyst 96:407–422. https://doi.org/10.1039/AN9719600407

    Article  Google Scholar 

  26. Sharma G, Wu W, Dalal EN (2005) The CIEDE2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations. Color Res Appl 30:21–30. https://doi.org/10.1002/col.20070

    Article  Google Scholar 

  27. Bhookya NN, Malmathanraj R, Palanisamy P (2020) Yield Estimation of Chilli Crop using Image Processing Techniques. In: 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). pp 200–204

  28. Bode H (1991) On Sandell’s sensitivity. Fresenius J Anal Chem 339:898. https://doi.org/10.1007/BF00321675

    Article  CAS  Google Scholar 

  29. Mortimer RJ, Varley TS (2011) Quantification of colour stimuli through the calculation of CIE chromaticity coordinates and luminance data for application to in situ colorimetry studies of electrochromic materials. Displays 32:35–44. https://doi.org/10.1016/j.displa.2010.10.001

    Article  CAS  Google Scholar 

  30. Shi Y, Collins R, Broome C (2013) Determination of uranium, thorium and plutonium isotopes by ICP-MS. J Radioanal Nucl Chem 296:509–515. https://doi.org/10.1007/s10967-012-2128-9

    Article  CAS  Google Scholar 

  31. Pal S, Singha M, Meena SS (2018) DPASV analytical technique for ppb level uranium analysis. AIP Conf Proc 1942:060010. https://doi.org/10.1063/1.5028780

    Article  CAS  Google Scholar 

  32. Wen Y, Yuan Y, Li L et al (2017) Ultrasensitive DNAzyme based amperometric determination of uranyl ion using mesoporous silica nanoparticles loaded with methylene blue. Microchim Acta 184:3909–3917. https://doi.org/10.1007/s00604-017-2397-7

    Article  CAS  Google Scholar 

  33. Manochehry S, McConnell EM, Tram KQ et al (2018) Colorimetric detection of uranyl using a litmus test. Front Chem 6

  34. Lee JH, Wang Z, Liu J, Lu Y (2008) Highly sensitive and selective colorimetric sensors for uranyl (UO22+): development and comparison of labeled and label-free DNAzyme-gold nanoparticle systems. J Am Chem Soc 130:14217–14226. https://doi.org/10.1021/ja803607z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dalvand K, Balavandy SK, Li F et al (2021) Optimization of smartphone-based on-site-capable uranium analysis in water using a 3D printed microdevice. Anal Bioanal Chem 413:3243–3251. https://doi.org/10.1007/s00216-021-03260-4

    Article  CAS  PubMed  Google Scholar 

  36. Long SE, Martin TD (1990) EPA method 200. 8 determination of trace elements in waters and wastes by inductively coupled plasma: mass spectrometry. Revision 4. 3. United States

  37. Du X, Boonchayaanant B, Wu WM et al (2011) Reduction of uranium(VI) by soluble iron(II) conforms with thermodynamic predictions. Environ Sci Technol 45:4718–4725. https://doi.org/10.1021/es2006012

    Article  CAS  PubMed  Google Scholar 

  38. Ozvoldova M (1992) The absorption spectra of U4+ ions in acid solutions. Acta Physica Slovaca 42:59–64

    Google Scholar 

  39. Morris R (2015) Spectrophotometry. Curr Protoc Essent Lab Tech 11:11–30. https://doi.org/10.1002/9780470089941.et0201s11

    Article  Google Scholar 

  40. Inn KGW, Johnson CM, Oldham W et al (2013) The urgent requirement for new radioanalytical certified reference materials for nuclear safeguards, forensics, and consequence management. J Radioanal Nucl Chem 296:5–22. https://doi.org/10.1007/s10967-012-1972-y

    Article  CAS  Google Scholar 

  41. International atomic energy agency (IAEA) (2021) Worldwide proficiency test on the determination of trace elements and uranium isotopes in drinking water. IAEA Analytical Quality in Nuclear Applications Series No. 64. Vienna

  42. Ferreira HS, de Bezerra MA, Costa Ferreira SL (2006) A pre-concentration procedure using cloud point extraction for the determination of uranium in natural water. Microchimica Acta 154:163–167. https://doi.org/10.1007/s00604-005-0475-8

    Article  CAS  Google Scholar 

  43. Pulhani VA, Dafauti S, Hegde AG (2012) Separation of uranium from iron in ground water samples using ion exchange resins. J Radioanal Nucl Chem 294:299–302. https://doi.org/10.1007/s10967-011-1582-0

    Article  CAS  Google Scholar 

  44. Kumar JR, Kim JS, Lee JY, Yoon HS (2011) A brief review on solvent extraction of uranium from acidic solutions. Sep Purif Rev 40:77–125. https://doi.org/10.1080/15422119.2010.549760

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was fully carried out using the facilities of UGC-DAE CSR. The authors acknowledge the financial support from UGC-DAE CSR through a Collaborative Research Scheme (CRS) project number: CRS/2021-22/02/518. The authors thank the assistance from Dr Goutam Pramanik and Dr Aparna Dutta, Scientists from UGC-DAE, Kolkata Centre, India. The authors also acknowledge the support provided from Charotar University of Science & Technology (CHARUSAT) in the form of Digital DSLR Camera and laboratory facility support in performing the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamesh Viswanathan Baskaran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baskaran, K.V., Saha, A. & Ghugre, S.S. Using a multistandard color chart guide for digital cameras to detect total uranium in drinking water using arsenazo III: an approach. J Radioanal Nucl Chem 332, 5071–5085 (2023). https://doi.org/10.1007/s10967-023-09222-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09222-7

Keywords

Navigation