Skip to main content
Log in

Pre-treatment for the separation of actinide and noble metals from high-level radioactive waste to improve the vitrification process and performance

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The porous compound generated from the reaction of 4-[tris(4-carboxyphenyl)methyl]benzoic acid (H4MTB) with actinide Th in simulated high-level radioactive waste can adsorb Ru, which can separate Th and Ru by more than 68.1 and 37.3%, respectively, in simulated high-level radioactive waste. The waste liquid before and after separation was vitrified with borosilicate glass and iron phosphate glass. The composition and morphology of the glasses were characterized by XRD, SEM and ICP‒OES, and the product consistency test was used to measure the chemical durability of the glasses. The chemical stability and waste loading of the glasses after the separation of actinide and noble metal elements was significantly improved. This work is of great significance for the recovery and utilization of actinide and noble metal elements in high-level radioactive waste and the optimization of the vitrification process of radioactive waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vernaz É, Bruezière J (2014) History of nuclear waste glass in France. Procedia Mater Sci 7:3–9. https://doi.org/10.1016/j.mspro.2014.10.002

    Article  CAS  Google Scholar 

  2. Harrison MT (2014) Vitrification of high level waste in the UK. Procedia Mater Sci 7:10–15. https://doi.org/10.1016/j.mspro.2014.10.003

    Article  CAS  Google Scholar 

  3. Ahn T, Jung H, He X, Pensado O (2008) Understanding long-term corrosion of alloy 22 container in the potential Yucca Mountain repository for high-level nuclear waste disposal. J Nucl Mater 379:33–41. https://doi.org/10.1016/j.jnucmat.2008.06.031

    Article  CAS  Google Scholar 

  4. Keiser DD, Abraham DP, Sinkler W et al (2000) Actinide distribution in a stainless steel–15 wt% zirconium high-level nuclear waste form. J Nucl Mater 279:234–244. https://doi.org/10.1016/S0022-3115(00)00002-7

    Article  CAS  Google Scholar 

  5. Didierlaurent R, Chauvin E, Lacombe J, et al. 2015. Cold crucible deployment in La Hague facility: the feedback from the first four years of operation-15119. In: WM2015 conference, March 15–19, 2015, Phoenix, AZ, USA

  6. Chung C-W, Um W, Valenta MM et al (2012) Characteristics of cast stone cementitious waste form for immobilization of secondary wastes from vitrification process. J Nucl Mater 420:164–174. https://doi.org/10.1016/j.jnucmat.2011.09.021

    Article  CAS  Google Scholar 

  7. Donald IW, Metcalfe BL, Taylor RNJ (1997) The immobilization of high level radioactive wastes using ceramics and glasses. J Mater Sci 32:5851–5887. https://doi.org/10.1023/A:1018646507438

    Article  CAS  Google Scholar 

  8. Qian Z, Liu X, Qiao Y et al (2019) Effect of fluorine on stabilization/solidification of radioactive fluoride liquid waste in magnesium potassium phosphate cement. J Radioanal Nucl Chem 319:393–399. https://doi.org/10.1007/s10967-018-6339-6

    Article  CAS  Google Scholar 

  9. Sugawara T, Ohira T, Komamine S, Ochi E (2015) Partitioning of rhodium and ruthenium between Pd–Rh–Ru and (Ru, Rh) O2 solid solutions in high-level radioactive waste glass. J Nucl Mater 465:590–596. https://doi.org/10.1016/j.jnucmat.2015.06.040

    Article  CAS  Google Scholar 

  10. Eibling RE, Fowler JR (1981) Mercury reduction and removal during high-level radioactive waste processing and vitrification. MRS Online Proc Libr 6:617–622. https://doi.org/10.1557/PROC-6-617

    Article  Google Scholar 

  11. Tong Q, Liu S, Huo J et al (2023) Structure, crystallization behavior and chemical stability analysis of Nd3+-basaltic glasses for immobilizing simulated trivalent actinides. J Nucl Mater 574:154194. https://doi.org/10.1016/j.jnucmat.2022.154194

    Article  CAS  Google Scholar 

  12. Minichan RL Vitrification of actinide solutions in SRS separations facilities (U)

  13. Schumacher RF, Carolina S, Ramsey WG, et al Development of a remote bushing system for actinide vitrification (U)

  14. Zhang N, Yuan L-Y, Guo W-L et al (2017) Extending the use of highly porous and functionalized MOFs to Th(IV) capture. ACS Appl Mater Interfaces 9:25216–25224. https://doi.org/10.1021/acsami.7b04192

    Article  CAS  PubMed  Google Scholar 

  15. Xu Y, Kim S-Y, Ito T et al (2013) Chromatographic separation of platinum group metals from simulated high level liquid waste using macroporous silica-based adsorbents. J Chromatogr A 1312:37–41. https://doi.org/10.1016/j.chroma.2013.08.089

    Article  CAS  PubMed  Google Scholar 

  16. Gumber N, Pai RV, Bahadur J et al (2023) γ-Resistant microporous CAU-1 MOF for selective remediation of thorium. ACS Omega 8:12268–12282. https://doi.org/10.1021/acsomega.2c08274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guo Y, Zhang Y, Allix M et al (2021) Rapid solidification synthesis of novel (La, Y)2(Zr, Ti)2O7 pyrochlore-based glass-ceramics for the immobilization of high-level wastes. J Eur Ceram Soc 41:7253–7260. https://doi.org/10.1016/j.jeurceramsoc.2021.07.051

    Article  CAS  Google Scholar 

  18. Wang J (2010) High-level radioactive waste disposal in China: update 2010. J Rock Mech Geotech Eng 2(1):1–11

    Google Scholar 

  19. Yu T, Qian Z, Li L et al (2022) Synthesis of thorium dioxide nanocrystals by pyrolysis of a thorium-based metal-organic framework. ChemistrySelect. https://doi.org/10.1002/slct.202202129

    Article  Google Scholar 

  20. Matyáš J, Gervasio V, Sannoh SE, Kruger AA (2017) Predictive modeling of crystal accumulation in high-level waste glass melters processing radioactive waste. J Nucl Mater 495:322–331. https://doi.org/10.1016/j.jnucmat.2017.08.034

    Article  CAS  Google Scholar 

  21. Zhu H, Wang F, Liao Q, Zhu Y (2020) Synthesis and characterization of zirconolite-sodium borosilicate glass-ceramics for nuclear waste immobilization. J Nucl Mater 532:152026. https://doi.org/10.1016/j.jnucmat.2020.152026

    Article  CAS  Google Scholar 

  22. Day DE, Wu Z, Ray CS, Hrma P (1998) Chemically durable iron phosphate glass wasteforms. J non cryst solids 241(1):1–12

    Article  CAS  Google Scholar 

  23. Wu X, Li Z-J, Zhou H et al (2021) A microporous Ce-based MOF with the octahedron cage for highly selective adsorption towards xenon over krypton. RSC Adv 11:30918–30924. https://doi.org/10.1039/D1RA04824D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Canivet J, Fateeva A, Guo Y et al (2014) Water adsorption in MOFs: fundamentals and applications. Chem Soc Rev 43:5594–5617. https://doi.org/10.1039/C4CS00078A

    Article  CAS  PubMed  Google Scholar 

  25. Lin B, Wei K, Ni J, Lin J (2013) KOH activation of thermally modified carbon as a support of Ru catalysts for ammonia synthesis. ChemCatChem 5:1941–1947. https://doi.org/10.1002/cctc.201200889

    Article  CAS  Google Scholar 

  26. Milonjic S (2007) A consideration of the correct calculation of thermodynamic parameters of adsorption. J Serb Chem Soc 72:1363–1367. https://doi.org/10.2298/JSC0712363M

    Article  CAS  Google Scholar 

  27. Apel E, Deubener J, Bernard A et al (2008) Phenomena and mechanisms of crack propagation in glass-ceramics. J Mech Behav Biomed Mater 1:313–325. https://doi.org/10.1016/j.jmbbm.2007.11.005

    Article  CAS  PubMed  Google Scholar 

  28. Liu X, Qiao Y, Qian Z, Ma H (2018) Research on chemical durability of iron phosphate glass wasteforms vitrifying SrF2 and CeF3. J Nucl Mater 508:286–291. https://doi.org/10.1016/j.jnucmat.2018.05.043

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the “Spent nuclear fuel reprocessing special project” (BG17002003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenghua Qian or Yanbo Qiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Qian, Z., Zhang, H. et al. Pre-treatment for the separation of actinide and noble metals from high-level radioactive waste to improve the vitrification process and performance. J Radioanal Nucl Chem 332, 5035–5043 (2023). https://doi.org/10.1007/s10967-023-09204-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09204-9

Keywords

Navigation