Skip to main content
Log in

The simple method of lipolysis/lipogenesis balance assessment based on 14C isotope: advances and importance of pH control

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Our study is devoted to the development of an optimal protocol for lipolysis and lipogenesis assessment using 14C-labeled glucose. We confirmed the utility of the developed method for the analysis of lipogenesis and lipolysis rates in adipocytes using insulin and isoproterenol. The present study describes rapid, cheap and simple techniques for the assessment of lipids metabolism and storage in adipocytes. Upgraded methods of 14C-labeled TAG extraction and saponification allow to investigate mechanisms of lipolysis, lipogenesis and TAG-cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ATGL:

Adipose tissue triglyceride lipase

ANOVA:

Analysis of variance

CE:

Cholesterol esters

Ces1:

Carboxylesterase type 1

DMEM HG:

Dulbecco modified Eagle’s medium high glucose

DAG:

Diacylglycerols

FBS:

Fetal bovine serum

FA:

Fatty acids

FFA:

Free fatty acids

HSL:

Hormone-sensitive lipase

MAG:

Monoacylglycerols

MGL:

Monoacylglycerol lipase

NMR:

Nuclear magnetic resonance

RIPA:

Radioimmunoprecipitation assay

TAG:

Triacylglycerols

TLC:

Thin layer chromatography

References

  1. Santos AL, Preta G (2018) Lipids in the cell: organisation regulates function. Cell Mol Life Sci 75:1909–1927. https://doi.org/10.1007/s00018-018-2765-4

    Article  CAS  PubMed  Google Scholar 

  2. Cockcroft S (2021) Mammalian lipids: structure, synthesis and function. Essays Biochem 65:813–845. https://doi.org/10.1042/EBC20200067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chehab FF (2008) Obesity and lipodystrophy–where do the circles intersect? Endocrinology 149:925–934. https://doi.org/10.1210/en.2007-1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lara-Castro C, Garvey WT (2008) Intracellular lipid accumulation in liver and muscle and the insulin resistance syndrome. Endocrinol Metab Clin North Am 37:841–856. https://doi.org/10.1016/j.ecl.2008.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. DuBroff R (2018) A reappraisal of the lipid hypothesis. Am J Med 131:993–997. https://doi.org/10.1016/j.amjmed.2018.04.027

    Article  PubMed  Google Scholar 

  6. de Jong JMA, Cannon B, Nedergaard J (2018) Promotion of lipid storage rather than of thermogenic competence by fetal versus newborn calf serum in primary cultures of brown adipocytes. Adipocyte 7:166–179. https://doi.org/10.1080/21623945.2018.1479578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang S, Liu G, Li Y, Pan Y (2022) Metabolic reprogramming induces macrophage polarization in the tumor microenvironment. Front Immunol 13:840029. https://doi.org/10.3389/fimmu.2022.840029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Duraj T, Carrión-Navarro J, Seyfried TN, García-Romero N, Ayuso-Sacido A (2021) Metabolic therapy and bioenergetic analysis: The missing piece of the puzzle. Mol Metab 54:101389. https://doi.org/10.1016/j.molmet.2021.101389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Saponaro C, Gaggini M, Carli F, Gastaldelli A (2015) The subtle balance between lipolysis and lipogenesis: a critical point in metabolic homeostasis. Nutrients 7:9453–9474. https://doi.org/10.3390/nu7115475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bardova K, Funda J, Pohl R, Cajka T, Hensler M, Kuda O, Janovska P, Adamcova K, Irodenko I, Lenkova L, Zouhar P, Horakova O, Flachs P, Rossmeisl M, Colca J, Kopecky J (2020) Additive effects of omega-3 fatty acids and thiazolidinediones in mice fed a high-fat diet: triacylglycerol/fatty acid cycling in adipose tissue. Nutrients 12:3737. https://doi.org/10.3390/nu12123737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Goldrick RB, McLoughlin GM (1970) Lipolysis and lipogenesis from glucose in human fat cells of different sizes. Effects of insulin, epinephrine, and theophylline. J Clin Invest 49:1213–1223. https://doi.org/10.1172/JCI106335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Saini RK, Prasad P, Shang X, Keum YS (2021) Advances in lipid extraction methods-a review. Int J Mol Sci 22:13643. https://doi.org/10.3390/ijms222413643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Adosraku RK, Choi GT, Constantinou-Kokotos V, Anderson MM, Gibbons WA (1994) NMR lipid profiles of cells, tissues, and body fluids: proton NMR analysis of human erythrocyte lipids. J Lipid Res 35:1925–1931

    Article  CAS  PubMed  Google Scholar 

  14. Yu SH, Possmayer F (2003) Lipid compositional analysis of pulmonary surfactant monolayers and monolayer-associated reservoirs. J Lipid Res 44:621–629. https://doi.org/10.1194/jlr.M200380-JLR200

    Article  CAS  PubMed  Google Scholar 

  15. Zebisch K, Voigt V, Wabitsch M, Brandsch M (2012) Protocol for effective differentiation of 3T3-L1 cells to adipocytes. Anal Biochem 425:88–90. https://doi.org/10.1016/j.ab.2012.03.005

    Article  CAS  PubMed  Google Scholar 

  16. Reis A, Rudnitskaya A, Blackburn GJ, Fauzi NM, Pitt AR, Spickett CM (2013) A comparison of five lipid extraction solvent systems for lipidomic studies of human LDL. J Lipid Res 54:1812–1824. https://doi.org/10.1194/jlr.M034330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lund J, Aas V, Tingstad RH, Van Hees A, Nikolić N (2018) Utilization of lactic acid in human myotubes and interplay with glucose and fatty acid metabolism. Sci Rep 8:9814. https://doi.org/10.1038/s41598-018-28249-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stahl E et al (1962) Thin-layer chromato-graphy. A laboratory handbook. Springer, Berlin. https://doi.org/10.1007/978-3-642-88488-7

    Book  Google Scholar 

  19. Hansen H, Wang T (2015) Does the saponification-GC method underestimate total cholesterol content in samples having considerable cholesterol esters? J Am Oil Chem Soc 92:1735–1738. https://doi.org/10.1007/s11746-015-2736-y

    Article  CAS  Google Scholar 

  20. Masella R, Cantafora A (1988) Determination of phospholipids in biological samples by an improved densitometric method on thin-layer chromatograms. Clin Chim Acta 176:63–70. https://doi.org/10.1016/0009-8981(88)90175-1

    Article  CAS  PubMed  Google Scholar 

  21. Liakh I, Sledzinski T, Kaska L, Mozolewska P, Mika A (2020) Sample preparation methods for lipidomics approaches used in studies of obesity. Molecules 25:5307. https://doi.org/10.3390/molecules25225307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Saggerson ED, Greenbaum AL (1970) The regulation of triglyceride synthesis and fatty acid synthesis in rat epididymal adipose tissue. Biochem J 119:221–242. https://doi.org/10.1042/bj1190221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. O’Donovan SD, Lenz M, Vink RG, Roumans NJT, de Kok TMCM, Mariman ECM, Peeters RLM, van Riel NAW, van Baak MA, Arts ICW (2019) A computational model of postprandial adipose tissue lipid metabolism derived using human arteriovenous stable isotope tracer data. PLoS Comput Biol 15:e1007400. https://doi.org/10.1371/journal.pcbi.1007400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Morigny P, Boucher J, Arner P, Langin D (2021) Lipid and glucose metabolism in white adipocytes: pathways, dysfunction and therapeutics. Nat Rev Endocrinol 17:276–295. https://doi.org/10.1038/s41574-021-00471-8

    Article  CAS  PubMed  Google Scholar 

  25. Sarkar S, Das S, Dagar S, Joshi MP, Mungi CV, Sawant AA, Patki GM, Rajamani S (2020) Prebiological membranes and their role in the emergence of early cellular life. J Membr Biol 253:589–608. https://doi.org/10.1007/s00232-020-00155-w

    Article  CAS  PubMed  Google Scholar 

  26. Kanicky JR, Poniatowski AF, Mehta NR, Shah DO (2000) Cooperativity among molecules at interfaces in relation to various technological processes: effect of chain length on the pKa of fatty acid salt solutions. Langmuir 16:172–177. https://doi.org/10.1021/la990719o

    Article  CAS  Google Scholar 

  27. Rustan AC, Drevon CA (2005) Fatty acids: structures and properties. eLS. https://doi.org/10.1038/npg.els.0003894

    Article  Google Scholar 

  28. Kanicky JR, Shah DO (2002) Effect of degree, type, and position of unsaturation on the pKa of long-chain fatty acids. J Colloid Interface Sci 256:201–207. https://doi.org/10.1006/jcis.2001.8009

    Article  CAS  PubMed  Google Scholar 

  29. Santoro A, McGraw TE, Kahn BB (2021) Insulin action in adipocytes, adipose remodeling, and systemic effects. Cell Metab 33:748–757. https://doi.org/10.1016/j.cmet.2021.03.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Martinez CC, Doxsey WG, Fazakerley DJ, Guertin DA (2022) Integrating adipocyte insulin signaling and metabolism in the multi-omics era. Trends Biochem Sci 47:531–546. https://doi.org/10.1016/j.tibs.2022.02.009

    Article  CAS  Google Scholar 

  31. Ahmadian M, Duncan RE, Jaworski K, Sarkadi-Nagy E, Sul HS (2007) Triacylglycerol metabolism in adipose tissue. Future Lipidol 2:229–237. https://doi.org/10.2217/17460875.2.2.229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Eichmann TO, Lass A (2015) DAG tales: the multiple faces of diacylglycerol—stereochemistry, metabolism, and signaling. Cell Mol Life Sci 72:3931–3952. https://doi.org/10.1007/s00018-015-1982-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Russian Science Foundation Grant #22-75-10085.

Author information

Authors and Affiliations

Authors

Contributions

S.M. and M.A. collected and analyzed the data, wrote and reviewed the manuscript. E.R. and M.M. analyzed the data and reviewed the manuscript. I.S. wrote, reviewed the manuscript and conceptualized the study. Ye.P. reviewed the manuscript and conceptualized the study.

Corresponding author

Correspondence to I. Stafeev.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michurina, S., Agareva, M., Ratner, E. et al. The simple method of lipolysis/lipogenesis balance assessment based on 14C isotope: advances and importance of pH control. J Radioanal Nucl Chem 333, 125–134 (2024). https://doi.org/10.1007/s10967-023-09198-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09198-4

Keywords

Navigation