Skip to main content
Log in

Ultrathin nickel hydroxide nanosheets decorated carbon nanotubes for electrochemical detection of uranyl ion

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The rapid detection of uranium in water environment is of great significance for water purification and uranium recovery. In this work, ultrathin nickel hydroxide (Ni(OH)2) nanosheets was in-situ growth on carbon nanotubes (CNTs) to form Ni(OH)2@CNTs electrode for uranyl ion (UO22+) detection. The as-prepared Ni(OH)2@CNTs shows good sensitivity in the electrolyte containing UO22+ with the limit of detection of about 8.603 ppb. Moreover, the Ni(OH)2@CNTs also exhibits significant selectivity for UO22+ in complex wastewater with several interfering cations and anions. This work provides a novel Ni(OH)2@CNTs electrode for UO22+ detection from uranium-containing water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shi S, Wu H, Zhang L et al (2021) Gold nanoparticles based electrochemical sensor for sensitive detection of uranyl in natural water. J Electroanal Chem 880:114884. https://doi.org/10.1016/j.jelechem.2020.114884

    Article  CAS  Google Scholar 

  2. Ye Y, Jin J, Liang Y et al (2021) Efficient and durable uraniu-m extraction from uranium mine tailings seepage water via a ph-otoelectrochemical method. iScience 24(11):103230. https://doi.org/10.1016/j.isci.2021.103230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Garg N, Rastogi L, Bera S et al (2022) ArsenazoIII functionalized gold nanoparticles: SPR based optical sensor for determination of uranyl ions (UO22+) in groundwater. Green Analyt Chem 3:100032. https://doi.org/10.1016/j.greeac.2022.100032

    Article  Google Scholar 

  4. Lin L, Liu T, Qie Y et al (2022) Electrocatalytic removal of low-concentration uranium using TiO2 nanotube arrays/Ti mesh electrodes. Environ Sci Technol 56(18):13327–13337. https://doi.org/10.1021/acs.est.2c02632

    Article  CAS  PubMed  Google Scholar 

  5. Wang Y, Wang Y, Song M et al (2023) Electrochemical-Mediated regenerable FeII active Sites for efficient uranium extraction at Ultra-Low Cell Voltage. Angew Chem Int Ed 135(21):e202217601. https://doi.org/10.1002/anie.202217601

    Article  CAS  Google Scholar 

  6. Yang X, Li F, Liu W et al (2023) Oxygen vacancy-induced spin polarization of tungsten oxide nanowires for efficient photocatalytic reduction and immobilization of uranium (VI) under simulated solar light. Appl Catal B 324:122202. https://doi.org/10.1016/j.apcatb.2022.122202

    Article  CAS  Google Scholar 

  7. Ziolkowski R, Gorski L, Oszwaldowski S et al (2012) Electrochemical uranyl biosensor with DNA oligonucleotides as receptorlayer. Anal Bioanal Chem 402(7):2259–2266. https://doi.org/10.1007/s00216-011-5510-5

    Article  CAS  PubMed  Google Scholar 

  8. Yildiz E, Sacmaci S, Kartal S et al (2016) A new chelating reagent and application for coprecipitation of some metals in food samples by FAAS. Food Chem 194:143–148. https://doi.org/10.1016/j.foodchem.2015.07.084

    Article  CAS  PubMed  Google Scholar 

  9. Balaram V (2016) Recent advances in the determination of elemental impurities in pharmaceuticals – status, challenges and moving frontiers. Trends Analyt Chem 80:83–95. https://doi.org/10.1016/j.trac.2016.02.001

    Article  CAS  Google Scholar 

  10. Santos JS, Teixeira LS, Dossantos WN et al (2010) Uranium determination using atomic spectrometric techniques: an overview. Anal Chim Acta 674(2):143–156. https://doi.org/10.1016/j.aca.2010.06.010

    Article  CAS  PubMed  Google Scholar 

  11. Sanyal K, Khooha A, Das G et al (2017) Direct determination of oxidation states of uranium in mixed-valent uranium oxides using total reflection x-ray fluorescence x-ray absorption near-edge spectroscopy. Anal Chem 89(1):871–876. https://doi.org/10.1021/acs.analchem.6b03945

    Article  CAS  PubMed  Google Scholar 

  12. Rathore DP (2008) Advances in technologies for the measurement of uranium in diverse matrices. Talanta 77(1):9–20. https://doi.org/10.1016/j.talanta.2008.06.019

    Article  CAS  PubMed  Google Scholar 

  13. Misra NL (2014) Advanced x-ray spectrometric techniques for characterization of nuclear materials: an overview of recent laboratory activities. Spectrochim Acta A Mol Biomol Spectrosc 101:134–139. https://doi.org/10.1016/j.sab.2014.07.021

    Article  CAS  Google Scholar 

  14. Zavadilová A, Drtinová B (2014) The matrix influence on the determination of low uranium concentrations by laser induced fluorescence method. J Radioanal Nucl Chem 304(1):115–122. https://doi.org/10.1007/s10967-014-3746-1

    Article  CAS  Google Scholar 

  15. Oshita K, Oshima M, Gao Y et al (2003) Synthesis of novel chitosan resin derivatized with serine moiety for the column collection/concentration of uranium and the determination of uranium byICP-MS. Anal Chim Acta 480(2):239–249. https://doi.org/10.1007/s10967-014-3746-1

    Article  CAS  Google Scholar 

  16. Helle G, MTariet C, Cote G (2015) Liquid-liquid extraction of uranium(VI) with Aliquat(R) 336 from HCl media in microfluidic devices: combination of micro-unit operations and online ICP-MS determination. Talanta 139:123–131. https://doi.org/10.1016/j.talanta.2015.02.046

    Article  CAS  PubMed  Google Scholar 

  17. Jiang J, Ma L, Chen J et al (2017) SERS detection and characterization of uranyl ion sorption on silver nanorods wrapped with Al2O3 layers. Microchim Acta 184(8):2775–2782. https://doi.org/10.1007/s00604-017-2286-0

    Article  CAS  Google Scholar 

  18. Bulska E, Wagner B (2016) Quantitative aspects of inductively coupled plasma mass spectrometry. Philos Trans A Math Phys Eng Sci 374(2079):20150369. https://doi.org/10.1098/rsta.2015.0369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Akl ZF (2017) Electrochemical Selective determination of Uranyl Ions using PVC membrane Sensor. Electroanalysis 29(5):1459–1468. https://doi.org/10.1002/elan.201700007

    Article  CAS  Google Scholar 

  20. Tyszczuk-rotko K, Jedruchniewicz K (2019) Ultrasensitive Sensor for Uranium Monitoring in Water Ecosystems. J Electrochem Soc 166(10):B837–B844. https://doi.org/10.1149/2.1371910jes

    Article  CAS  Google Scholar 

  21. Tyszczuk-rotko K, Domanska K, Czech B et al (2017) Development simple and sensitive voltammetric procedure for ultra-trace determination of U(VI). Talanta 165:474–481. https://doi.org/10.1016/j.talanta.2016.12.066

    Article  CAS  PubMed  Google Scholar 

  22. Zhai Q, Cheng W (2019) Soft and stretchable electrochemical biosensors. Mater Today Nano 7:100041. https://doi.org/10.1016/j.mtnano.2019.100041

    Article  Google Scholar 

  23. Zhang Y, Yan Z, Gao Y et al (2023) Electron modulation by atomic ir site decoration in porous Co/N co-doped carbon for electrocatalytic hydrogen evolution. Nano Res 16(2):2011–2019. https://doi.org/10.1007/s12274-022-4855-8

    Article  CAS  Google Scholar 

  24. Li Y, Wang Z, Liu C et al (2021) Graphene oxide modified H4L-ion imprinting electrochemical sensor for the detection of uranyl ions. Z Anorg Allg Chem 647(19):1914–1920. https://doi.org/10.1002/zaac.202100182

    Article  CAS  Google Scholar 

  25. Ziółkowski R, Górski Ł, Malinowska E (2017) Carboxylated graphene as a sensing material for electrochemical uranyl ion detection. Sens Actuators B Chem 238:540–547. https://doi.org/10.1016/j.snb.2016.07.119

    Article  CAS  Google Scholar 

  26. Weiqun Shi C, Pei, Lin W et al (2019) Alkalization Intercalation of MXene for Electrochemical Detection of Uranyl Ion. J Inorg Mater 34(1):85–90. https://doi.org/10.15541/jim20180232

    Article  Google Scholar 

  27. Fan H, Huang X, Shang L et al (2016) Controllable synthesis of ultrathin transition-metal hydroxide nanosheets and their extended composite nanostructures for enhanced catalytic activity in the heck reaction. Angew Chem Int Ed 55(6):2167–2170. https://doi.org/10.1002/anie.201508939

    Article  CAS  Google Scholar 

  28. Ida S, Shiga D, Koinuma M et al (2008) Synthesis of hexagonal nickel hydroxide nanosheets by exfoliation of layered nickel hydroxide intercalated with dodecyl sulfate ions. J Am Chem Soc 130(43):14038–14039. https://doi.org/10.1021/ja804397n

    Article  CAS  PubMed  Google Scholar 

  29. Zhao Y, Wang Q, Bian T et al (2015) Ni3+ doped monolayer layered double hydroxide nanosheets as efficient electrodes for supercapacitors. Nanoscale 7(16):7168–7173. https://doi.org/10.1039/c5nr01320h

    Article  CAS  PubMed  Google Scholar 

  30. Guzinski M, Lindner E, Pendley B et al (2022) Electrochemical sensorfor tricyclic antidepressants with low nanomolar detection limit: quantitative determination of Amitriptyline and Nortriptyline in blood. Talanta 239:123072. https://doi.org/10.1016/j.talanta.2021.123072

    Article  CAS  PubMed  Google Scholar 

  31. Peng X, Mi Y, Bao H et al (2020) Ambient electrosynthesis of ammonia with efficient denitration. Nano Energy 78:105321. https://doi.org/10.1016/j.nanoen.2020.105321

    Article  CAS  Google Scholar 

  32. Xing X, Liu R, Anjass M et al (2020) Bimetallic manganese-vanadium functionalized N, S-doped carbon nanotubes as efficient oxygen evolution and oxygen reduction electrocatalysts. Appl Catal B 277:119–195. https://doi.org/10.1016/j.apcatb.2020.119195

    Article  CAS  Google Scholar 

  33. Cao X, Sun Y, Wang Y, Zhang Z, Liu Y (2021) PtRu bimetallic nanoparticles embedded in MOF-derived porous carbons for efficiently electrochemical sensing of uranium. J Solid State Electrochem 25(2):425–433. https://doi.org/10.1007/s10008-020-04668-1

    Article  CAS  Google Scholar 

  34. Yang H, Liu X, Hao M et al (2021) Functionalized iron–nitrogen–carbon electrocatalyst provides a reversible electron transfer platform for efficient uranium extraction from seawater. Adv Mater 33(51):2106621. https://doi.org/10.1002/adma.202106621

    Article  CAS  Google Scholar 

Download references

Funding

The work was financially supported by the National Natural Science Foundation of China (21902129), Sichuan Science and Technology Program (2022NSFSC0260 and 2021JDTD0019). The authors would like to thank Shiyanjia Lab (https://www.shiyanjia.com) for supporting XPS tests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yujuan Pu or Youkui Zhang.

Ethics declarations

Conflict of interest

The authors of this manuscript have no competing or conflict of interest with any person or any organization.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Gao, Y., Pu, Y. et al. Ultrathin nickel hydroxide nanosheets decorated carbon nanotubes for electrochemical detection of uranyl ion. J Radioanal Nucl Chem 333, 117–123 (2024). https://doi.org/10.1007/s10967-023-09181-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09181-z

Keywords

Navigation