Skip to main content
Log in

Investigation of the strontium (Sr(II)) adsorption of 18-crown-6 based polymer

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The development of efficient and reusable Sr2+ adsorbent materials holds great significance for nuclear energy development and environmental protection. In order to address the low crown ether content in crown ether-based solid-phase adsorbents, this study employed condensation polymerization using di(aminobenzo)-18-crown-6 as monomers to prepare polymer materials and porous membranes. The adsorption kinetics, adsorption isotherm, and recyclability of the crown ether-based polymer were comprehensively investigated for Sr2+ adsorption. The results showed that the adsorption behavior of the polymer towards Sr2+ followed a pseudo-first-order kinetic model and Langmuir adsorption model, with a maximum adsorption capacity of 4.6 mg/g. Furthermore, even after five cycles, the adsorption performance of the polymer material for Sr2+ showed no significant decline. This study provides a new perspective for the development of long-lasting and highly efficient Sr2+ adsorbent materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data generated and analyzed in this study is available from corresponding author on reasonable request.

References

  1. Zhang M, Gu P, Zhang Z, Liu J, Dong L, Zhang G (2018) Effective, rapid and selective adsorption of radioactive Sr2+ from aqueous solution by a novel metal sulfide adsorbent. Chem Eng J 351:668–677

    Article  CAS  Google Scholar 

  2. Mu W, Yu Q, Gu J, Li X, Yang Y, Wei H, Peng S (2020) Bonding of crown ethers to α-zirconium phosphate—novel layered adsorbent for radioactive strontium separation. Sep Purif Technol 240:116658

    Article  CAS  Google Scholar 

  3. Gao YJ, Feng ML, Zhang B, Wu ZF, Song Y, Huang XY (2018) An easily synthesized microporous framework material for the selective capture of radioactive Cs+ and Sr2+ ions. J Mater Chem A 6:3967–3976

    Article  CAS  Google Scholar 

  4. Khani MH, Khamseh AG (2023) Statistical analysis, equilibrium and dynamic study on the biosorption of strontium ions on Chlorella vulgaris. J Radioanal Nucl Chem 332:3325–3334

    Article  CAS  Google Scholar 

  5. Chaalal O, Zekri AY, Soliman AM (2015) A novel technique for the removal of strontium from water using thermophilic bacteria in a membrane reactor. J Ind Eng Chem 21:822–827

    Article  CAS  Google Scholar 

  6. Prill B, Sedir U, Yusan S, Elmastas Gultekin O (2022) Strontium (II) biosorption studies on starch-functionalized magnetic nanobiocomposites using full factorial design method. J Polym Environ 30:5148–5162

    Article  CAS  Google Scholar 

  7. Li WA, Peng YC, Ma W, Huang XY, Feng ML (2022) Rapid and selective removal of Cs+ and Sr2+ ions by two zeolite-type sulfides via ion exchange method. Chem Eng J 442:136377

    Article  CAS  Google Scholar 

  8. İnan S (2022) Inorganic ion exchangers for strontium removal from radioactive waste: a review. J Radioanal Nucl Chem 331:1137–1154

    Article  Google Scholar 

  9. Huang G, Jiang L, Shao L, Yang X, Huang J (2020) In situ electrochemical synthesis of Zn-Al layered double hydroxides for removal of strontium. Colloids Surfaces A Physicochem Eng Asp 597:124785

    Article  CAS  Google Scholar 

  10. Cai YH, Yang XJ, Schäfer AI (2020) Removal of naturally occurring strontium by nanofiltration/reverse osmosis from groundwater. Membranes 10:1–23

    Article  Google Scholar 

  11. Zhang L, Lu Y, Liu YL, Li M, Zhao HY, Hou LA (2016) High flux MWCNTs-interlinked GO hybrid membranes survived in cross-flow filtration for the treatment of strontium-containing wastewater. J Hazard Mater 320:187–193

    Article  CAS  PubMed  Google Scholar 

  12. Wang W, Luo J, Wei W, Liu S, He J, Ma J (2021) An asymmetric pulsed current-assisted electrochemical method for Sr(II) extraction using supramolecular composites. Chemosphere 271:129531

    Article  CAS  PubMed  Google Scholar 

  13. Alshuiael SM, Al-Ghouti MA (2022) Development of a novel tailored ion-imprinted polymer for recovery of lithium and strontium from reverse osmosis concentrated brine. Sep Purif Technol 295:121320

    Article  CAS  Google Scholar 

  14. Kaveeshwar AR, Kumar PS, Revellame ED, Gang DD, Zappi ME, Subramaniam R (2018) Adsorption properties and mechanism of barium (II) and strontium (II) removal from fracking wastewater using pecan shell based activated carbon. J Clean Prod 193:1–13

    Article  CAS  Google Scholar 

  15. Schön U, Blasius E, Klein W (1985) Separation of strontium from nuclear waste solutions by solvent extraction with crown ethers. Anim Reprod Sci 9:95–98

    Google Scholar 

  16. Chen Z, Wu Y, Wei Y (2014) Adsorption characteristics and radiation stability of a silica-based DtBuCH18C6 adsorbent for Sr(II) separation in HNO3 medium. J Radioanal Nucl Chem 299:485–491

    Article  CAS  Google Scholar 

  17. Bai F, He C, Chen G, Wei J, Wang J, Ye G (2013) Synthesis of alkyl substituted dicyclohexano-18-crown-6 homologues for strontium extraction in HNO3 media. Energy Procedia 39:396–402

    Article  CAS  Google Scholar 

  18. Pathak S, Jayabun S, Boda A, Ali SM, Sengupta A (2020) Experimental and theoretical insight into the extraction mechanism, kinetics, thermodynamics, complexation and radiolytic stability of novel calix crown ether in ionic liquid with Sr2+. J Mol Liq 316:113864

    Article  CAS  Google Scholar 

  19. Momen MA, Dietz ML (2021) High-capacity extraction chromatographic materials based on polysulfone microcapsules for the separation and preconcentration of lanthanides from aqueous solution. React Funct Polym 160:612–621

    Article  Google Scholar 

  20. Ma J, Zhang Y, Ouyang J, Wu X, Luo J, Liu S, Gong X (2019) A facile preparation of dicyclohexano-18-crown-6 ether impregnated titanate nanotubes for strontium removal from acidic solution. Solid State Sci 90:49–55

    Article  CAS  Google Scholar 

  21. Yest TL, Fagan BC, Allain LR, Bames CE, Dai S, Sepaniak MJ, Xue Z (2000) Crown ether-doped sol-gel materials for strontium(II) separation. Anal Chem 72:5516–5519

    Article  Google Scholar 

  22. Zhang A, Xiao C, Liu Y, Hu Q, Chen C, Kuraoka E (2010) Preparation of macroporous silica-based crown ether materials for strontium separation. J Porous Mater 17:153–161

    Article  CAS  Google Scholar 

  23. Ye G, Bai F, Wei J, Wang J, Chen J (2012) Novel polysiloxane resin functionalized with dicyclohexano-18-crown-6 (DCH18C6): synthesis, characterization and extraction of Sr(II) in high acidity HNO3 medium. J Hazard Mater 225–226:8–14

    Article  PubMed  Google Scholar 

  24. Song Y, Du Y, Lv D, Ye G, Wang J (2014) Macrocyclic receptors immobilized to monodisperse porous polymer particles by chemical grafting and physical impregnation for strontium capture: a comparative study. J Hazard Mater 274:221–228

    Article  CAS  PubMed  Google Scholar 

  25. Liu Z, Zhou Y, Guo M, Lv B, Wu Z, Zhou W (2019) Experimental and theoretical investigations of Cs+ adsorption on crown ethers modified magnetic adsorbent. J Hazard Mater 371:712–720

    Article  CAS  PubMed  Google Scholar 

  26. Bai F, Ye G, Chen G, Wei J, Wang J, Chen J (2013) New macrocyclic ligand incorporated organosilicas: co-condensation synthesis, characterization and separation of strontium in simulated high level liquid waste. React Funct Polym 73:228–236

    Article  CAS  Google Scholar 

  27. Ye G, Leng Y, Bai F, Wei J, Wang J, Chen J (2013) Site-selective functionalization of periodic mesoporous organosilica (PMO) with macrocyclic host for specific and reversible recognition of heavy metal. Chem Asian J 8:1482–1488

    Article  CAS  PubMed  Google Scholar 

  28. Pei H, Yan F, Ma X, Li X, Liu C, Li J, Cui Z, He B (2018) In situ one-pot formation of crown ether functionalized polysulfone membranes for highly efficient lithium isotope adsorptive separation. Eur Polym J 109:288–296

    Article  CAS  Google Scholar 

  29. He J, Mao L, Ma X, Hua J, Cui Z, He B, Pei H, Li J (2022) Highly-efficient adsorptive separation of Cs+ from aqueous solutions by porous polyimide membrane containing dibenzo-18-crown-6. Sep Purif Technol 299:121757

    Article  CAS  Google Scholar 

  30. Wei Y, Rakhatkyzy M, Salih KAM, Wang K, Hamza MF, Guibal E (2020) Controlled bi-functionalization of silica microbeads through grafting of amidoxime/methacrylic acid for Sr(II) enhanced sorption. Chem Eng J 402:125220

    Article  CAS  Google Scholar 

  31. Nishiyama Y, Hanafusa T, Yamashita J, Yamamoto Y, Ono T (2016) Adsorption and removal of strontium in aqueous solution by synthetic hydroxyapatite. J Radioanal Nucl Chem 307:1279–1285

    Article  CAS  PubMed  Google Scholar 

  32. Ahmad AL, Abdulkarim AA, Ooi BS, Ismail S (2013) Recent development in additives modifications of polyethersulfone membrane for flux enhancement. Chem Eng J 223:246–267

    Article  CAS  Google Scholar 

  33. Mousavi SM, Zadhoush A (2017) Investigation of the relation between viscoelastic properties of polysulfone solutions, phase inversion process and membrane morphology: the effect of solvent power. J Memb Sci 532:47–57

    Article  CAS  Google Scholar 

  34. Sukitpaneenit P, Chung TS (2009) Molecular elucidation of morphology and mechanical properties of PVDF hollow fiber membranes from aspects of phase inversion, crystallization and rheology. J Memb Sci 340:192–205

    Article  CAS  Google Scholar 

  35. Hadisaputra S, Pranowo HD, Armunanto R (2012) Extraction of strontium(ii) by crown ether: insights from density functional calculation. Indones J Chem 12:207–216

    Article  CAS  Google Scholar 

  36. Horwitz EP, Dietz ML, Fisher DE (1991) Separation and preconcentration of strontium from biological, environmental, and nuclear waste samples by extraction chromatography using a crown ether. Anal Chem 63:522–525

    Article  CAS  PubMed  Google Scholar 

  37. Pei H, Yan F, Wang Z, Liu C, Hou S (2019) Polysulfone-graft-4-aminobenzo-15-crown-5-ether based tandem membrane chromatography for efficient adsorptive separation of lithium isotopes. J Chromatogr A 1602:206–216

    Article  CAS  PubMed  Google Scholar 

  38. Doǧan M, Alkan M, Türkyilmaz A, Özdemir Y (2004) Kinetics and mechanism of removal of methylene blue by adsorption onto perlite. J Hazard Mater 109:141–148

    Article  PubMed  Google Scholar 

  39. Torrejos REC, Nisola GM, Park MJ, Shon HK, Seo JG, Koo S, Chung WJ (2015) Synthesis and characterization of multi-walled carbon nanotubes-supported dibenzo-14-crown-4 ether with proton ionizable carboxyl sidearm as Li+ adsorbents. Chem Eng J 264:89–98

    Article  CAS  Google Scholar 

  40. Wang X, Li Y, Li H, Yang C (2016) Chitosan membrane adsorber for low concentration copper ion removal. Carbohydr Polym 146:274–281

    Article  CAS  PubMed  Google Scholar 

  41. Yang L, Xiao H, Qian Y, Zhao X, Kong XY, Liu P, Xin W, Fu L, Jiang L, Wen L (2022) Bioinspired hierarchical porous membrane for efficient uranium extraction from seawater. Nat Sustain 5:71–80

    Article  Google Scholar 

  42. Hong HJ, Ryu J, Park IS, Ryu T, Chung KS, Kim BG (2016) Investigation of the strontium (Sr(II)) adsorption of an alginate microsphere as a low-cost adsorbent for removal and recovery from seawater. J Environ Manag 165:263–270

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 22208196), the China postdoctoral science foundation (Grant No. 2021M702014), Natural Science Foundation of Shandong Province, China (Grant No. ZR202111080133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongchang Pei.

Ethics declarations

Conflict of interest

The authors state that there is no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, H., Liu, J., Yue, M. et al. Investigation of the strontium (Sr(II)) adsorption of 18-crown-6 based polymer. J Radioanal Nucl Chem 332, 5051–5057 (2023). https://doi.org/10.1007/s10967-023-09163-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09163-1

Keywords

Navigation