Skip to main content
Log in

Three novel indole-based porous organic polymers for efficient iodine capture in water

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Three novel indole-based porous organic polymers (I3CA-POP, TAT-POP and Isatin-POP) were prepared for iodine adsorption from aqueous solution. It is worth noting that a polymerization process accompanying decarboxylation and a new method of constructing tertiary carbon center by ethanol and chloroform were proposed in the preparation of I3CA-POP and TAT-POP, respectively. In addition, our results indicate that I3CA-POP outperforms other sorbents in both I2 aqueous solution and KI3 aqueous solution. More importantly, the adsorption kinetics, thermodynamics, regeneration and mechanism studies of I3CA-POP were performed, demonstrating that physisorption and chemisorption may proceed at the same time in the iodine removal process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Scheme 4
Scheme 5
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Scheme 6

Similar content being viewed by others

References

  1. Yu Y, Yin Z, Cao L, Ma Y (2022) Organic porous solid as promising iodine capture materials. J Incl Phenom Macro 102(5/6):395–427

    Article  CAS  Google Scholar 

  2. Sun Q, Aguila B, Ma S (2019) Opportunities of porous organic polymers for radionuclide sequestration. Trends Chem 1(3):292–303

    Article  CAS  Google Scholar 

  3. Tesfay Reda A, Pan M, Zhang D, Xu X (2021) Bismuth-based materials for iodine capture and storage: a review. J Environ Chem Eng 9(4):105279

    Article  CAS  Google Scholar 

  4. Xie W, Cui D, Zhang S, Xu Y, Jiang D (2019) Iodine capture in porous organic polymers and metal-organic frameworks materials. Mater Horiz 6(8):1571–1595

    Article  CAS  Google Scholar 

  5. Qin J, Zhang W, Chen Y, Liu R, Fan Y (2021) Zinc-based triazole metal complexes for efficient iodine adsorption in water. Environ Sci Pollut R 28(22):28797–28807

    Article  CAS  Google Scholar 

  6. Gogia A, Das P, Mandal SK (2020) Tunable strategies involving flexibility and angularity of dual linkers for a 3D metal-organic framework capable of multimedia iodine capture. ACS Appl Mater Interfaces 12(41):46107–46118

    Article  CAS  PubMed  Google Scholar 

  7. El-Shahat M, Abdelhamid AE, Abdelhameed RM (2020) Capture of iodide from wastewater by effective adsorptive membrane synthesized from MIL-125-NH2 and cross-linked chitosan. Carbohyd Polym 231:115742

    Article  CAS  Google Scholar 

  8. Liu R, Zhang W, Chen Y, Xu C, Hu G, Han Z (2020) Highly efficient adsorption of iodine under ultrahigh pressure from aqueous solution. Sep Purif Technol 233:115999

    Article  CAS  Google Scholar 

  9. Qu G, Han Y, Qi J, Xing X, Hou M, Sun Y, Wang X, Sun G (2021) Rapid iodine capture from radioactive wastewater by green and low-cost biomass waste derived porous silicon-carbon composite. RSC Adv 11(9):5268–5275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang Q, Zhai T, Wang Z, Cheng G, Ma H, Zhang Q, Zhao Y, Tan B, Zhang C (2019) Hyperporous carbon from triptycene-based hypercrosslinked polymer for iodine capture. Adv Mater Interfaces 6(9):1900249

    Article  Google Scholar 

  11. Huang M, Yang L, Li X, Chang G (2020) An indole-derived porous organic polymer for the efficient visual colorimetric capture of iodine in aqueous media via the synergistic effects of cation-π and electrostatic forces. Chem Commun 56(9):1401–1404

    Article  CAS  Google Scholar 

  12. Cao J, Zhu H, Shangguan L, Liu Y, Liu P, Li Q, Wu Y, Huang F (2021) A pillar[5]arene-based 3D polymer network for efficient iodine capture in aqueous solution. Polym Chem-UK 12(24):3517–3521

    Article  CAS  Google Scholar 

  13. Li B, Wang B, Huang X, Dai L, Cui L, Li J, Jia X, Li C (2019) Terphen[n]arenes and quaterphen[n]arenes (n=3-6): one-pot synthesis, self-assembly into supramolecular gels, and iodine capture. Angew Chem Int Edit 58(12):3885–3889

    Article  Google Scholar 

  14. Lin Y, Jiang X, Kim ST, Alahakoon SB, Hou X, Zhang Z, Thompson CM, Smaldone RA, Ke C (2017) An elastic hydrogen-bonded cross-linked organic framework for effective iodine capture in water. J Am Chem Soc 139(21):7172–7175

    Article  CAS  PubMed  Google Scholar 

  15. Zheng Z, Lin Q, Xie L, Chen X, Zhou H, Lin K, Zhang D, Chi XD, Sessler JL, Wang HY (2023) Macrocycle polymeric networks based on a chair-like calix[4]pyrrole for the rapid and efficient adsorption of iodine from water. J Mater Chem A

  16. Gao R, An B, Zhou C, Zhang X (2022) Synthesis of a Triazaisotruxene-based porous organic polymer and its application in iodine capture. Molecules 27:8722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang Z, Li L, An D, Li H, Zhang X (2020) Triazine-based covalent organic polycalix[4] arenes for highly efficient and reversible iodine capture in water. J Mater Sci 55(4):1854–1864

    Article  CAS  Google Scholar 

  18. Wang Y, Zhao M, Zhang L, Chen Y (2021) Covalent organic polymers are highly effective absorbers of iodine in water under ultra-high pressure. J Radioanal Nucl Ch 329(3):1407–1415

    Article  CAS  Google Scholar 

  19. Xie L, Zheng Z, Lin Q, Zhou H, Ji X, Sessler JL, Wang H (2022) Calix[4]pyrrole-based crosslinked polymer networks for highly effective iodine adsorption from water. Angew Chem Int Edit 61(1):e202113724

    Article  CAS  Google Scholar 

  20. An D, Li L, Zhang Z, Asiri AM, Alamry KA, Zhang X (2020) Amino-bridged covalent organic Polycalix[4]arenes for ultra efficient adsorption of iodine in water. Mater Chem Phys 239:122328

    Article  CAS  Google Scholar 

  21. Chen R, Hu T, Li Y (2021) Stable nitrogen-containing covalent organic framework as porous adsorbent for effective iodine capture from water. React Funct Polym 159:104806

    Article  CAS  Google Scholar 

  22. Sen A, Sharma S, Dutta S, Shirolkar MM, Dam GK, Let S, Ghosh SK (2021) Functionalized ionic porous organic polymers exhibiting high iodine uptake from both the vapor and aqueous medium. ACS Appl Mater Interfaces 13(29):34188–34196

    Article  CAS  PubMed  Google Scholar 

  23. Avais M, Chattopadhyay S (2022) Porous polyaminoamides via an exotemplate synthesis approach for ultrahigh multimedia iodine adsorption. J Mater Chem A 10:20090–20100

    Article  CAS  Google Scholar 

  24. Xu X, Li Y, Zhou L, Liu N, Wu Z (2022) Precise fabrication of porous polymer frameworks using rigid polyisocyanides as building blocks: from structural regulation to efficient iodine capture. Chem Sci 13:1111–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shang Z, Pu F, Zhang X, Jin H, Chen S, Ding Y, Hu A (2023) A hyper-cross-linked aerogel with rigid conjugated polymers as building blocks for efficient iodine capture. ACS Appl Polym Mater 5(5):3827–3834

    Article  CAS  Google Scholar 

  26. Liu B, Mao C, Zhou Z, Wang Q, Zhou X, Liao Z, Deng R, Liu D, Beiyuan J, Lv D, Li J, Huang L, Chen X, Yuan W (2023) Two facile aniline-based hypercrosslinked polymer adsorbents for highly efficient iodine capture and removal. Int J Mol Sci 24:370

    Article  CAS  Google Scholar 

  27. Kiruthika J, Arunachalam M (2022) Pillar[5]arene-based cross-linked polymer for the rapid adsorption of iodine from water and vapor phases. Polymer 259:125322

    Article  CAS  Google Scholar 

  28. Wang J, Wang X, Deng Y, Wu T, Chen J, Liu J, Xu L, Zang Y (2023) Preparation of an electron-rich polyimide-based hypercrosslinked polymer for high-efficiency and reversible iodine capture. Polymer 267:125665

    Article  CAS  Google Scholar 

  29. Chen D, Ma T, Zhao X, Jing X, Zhao R, Zhu G (2022) Multi-functionalization integration into the electrospun nanofibers exhibiting effective iodine capture from water. ACS Appl Mater Interfaces 14:47126–47135

    Article  CAS  PubMed  Google Scholar 

  30. Jie K, Chen H, Zhang P, Guo W, Li M, Yang Z, Dai S (2018) A benzoquinone-derived porous hydrophenazine framework for efficient and reversible iodine capture. Chem Commun 54:12706–12709

    Article  CAS  Google Scholar 

  31. Saleh M, Lee HM, Kemp KC, Kim KS (2014) Highly stable CO2/N2 and CO2/CH4 selectivity in hyper-cross-linked heterocyclic porous polymers. ACS Appl Mater Interfaces 6(10):7325–7333

    Article  CAS  PubMed  Google Scholar 

  32. Wang Y, Zhang L, Yang L, Ma Y, Chang G (2019) A recyclable indole-based polymer for trinitrotoluene adsorption via synergistic effect of dipole-π and donor-acceptor interactions. Polym Chem-UK 10:4632–4636

    Article  CAS  Google Scholar 

  33. Liu C, Jin Y, Wang R, Han T, Liu X, Wang B, Huang C, Zhu S, Chen J (2020) Indole carbonized polymer dots boost full-color emission by regulating surface state. iScience 23:101546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Milakin KA, Morávková Z, Konefał R, Gupta S, Acharya U, WalterováZ BP (2022) Optimization of oxidant for polymerization of indole in water-ethanol medium. Polymer 239:124447

    Article  CAS  Google Scholar 

  35. He Q, Xu Y, Yang X (2019) Facile synthesis aminated indole-based porous organic polymer for highly selective capture CO2 by the coefficient effect of π-π-stacking and hydrogen bonding. RSC Adv 9:11851–11854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang P, Yang L, Wang Y, Song L, Yang J, Chang G (2019) An indole-based aerogel for enhanced removal of heavy metals from water via the synergistic effects of complexation and cation-π interactions. J Mater Chem A 7:31–539

    CAS  Google Scholar 

  37. Wang Y, Luo X, Zhang L, Zhang S, Zhang L (2019) A reversible, colorimetric, pH-responsive indolebased hydrogel and its application in urea detection. RSC Adv 9:24299–24304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bai J, Ma X, Yan H, Zhu J, Wang K, Wang J (2020) A novel functional porous organic polymer for the removal of uranium from wastewater. Micropor Mesopor Mat 306:110441

    Article  CAS  Google Scholar 

  39. Wang Y, Liu X, Xie Y, Chen B, Zhang Y (2022) Effective and rapid adsorption of uranium via synergy of complexation and cation-π interaction. J Radioanal Nucl Ch 331:1115–1126

    Article  CAS  Google Scholar 

  40. Chang G, Shang Z, Yu T, Yang L (2016) Rational design of a novel indole-based microporous organic polymer: enhanced carbondioxide uptake via local dipole-π interactions. J Mater Chem A 4:2517–2523

    Article  CAS  Google Scholar 

  41. Wei W, Chang G, Xu Y, Yang L (2018) Indole-based conjugated microporous polymer: a new and stable lithium storage anode with high-capacity and long-life induced by cation-π interaction and N-rich aromatic structure. J Mater Chem A 6:18794–18798

    Article  CAS  Google Scholar 

  42. Arza CR, Zhang B (2019) Synthesis, thermal properties, and rheological characteristics of indole-based aromatic polyesters. ACS Omega 4(12):15012–15021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang Q, Li R, Ouyang X, Wang G (2019) A novel indole-based conjugated microporous polymer for high effective removal of heavy metals from aqueous solution via double cation-π interactions. RSC Adv 9:40531–40535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Du M, Peng Y, Ma Y, Yang L, Zhou Y, Zeng F, Wang X, Song M, Chang G (2020) Selective carbon dioxide capture in antifouling indole-based microporous organic polymers. Chin J Polym Sci 38:187–194

    Article  CAS  Google Scholar 

  45. Yuan K, Jiang L, Zhang J, Zhang J (2022) Exploration synthesis and study of indol and pyridine based heterocycle porous organic polytriazine for highly efficient iodine capture. J Porous Mat 29:405–413

    Article  CAS  Google Scholar 

  46. Dong B, Shi T, Lu Y (2020) Multicolor conjugated polymers containing thiophene/indole moieties and the influence of structures on their photophysical properties. Polymer 206:122820

    Article  CAS  Google Scholar 

  47. Wang P, Linares-Pasten JA, Zhang B (2020) Synthesis, molecular docking simulation, and enzymatic degradation of AB-type indole-based polyesters with improved thermal properties. Biomacromol 21:1078–1090

    Article  Google Scholar 

  48. Xiong T, Lee WSV, Chen L, Tan TL, Huang X, Xue J (2017) Indole-based conjugated macromolecule as redoxmediated electrolyte for ultrahigh power supercapacitor. Energy Environ Sci 10:2441–2449

    Article  CAS  Google Scholar 

  49. Urakami H, Zhang K, Vilela F (2013) Modification of conjugated microporous poly-benzothiadiazole for photosensitized singlet oxygen generation in water. Chem Commun 49:2353–2355

    Article  CAS  Google Scholar 

  50. Xu M, Wang T, Gao P, Zhao L, Zhou L, Hua D (2019) Highly fluorescent conjugated microporous polymers for concurrent adsorption and detection of uranium. J Mater Chem A 7:11214–11222

    Article  CAS  Google Scholar 

  51. Li X, Wang C, Lai W, Huang W (2016) Triazatruxene-based materials for organic electronics and optoelectronics. J Mater Chem C 4:10574–10587

    Article  CAS  Google Scholar 

  52. Bogdanov AV, Mironov VF (2018) Advances in the synthesis of isatins: a survey of the last decade. Synthesis 50(08):1601–1609

    Article  CAS  Google Scholar 

  53. Sadak AE, Karakus E, Chumakov YM, Dogan NA (2020) Yavuz CT (2020) Triazatruxene-based ordered porous polymer: high capacity CO2, CH4, and H2 capture, heterogeneous suzuki-miyaura catalytic coupling, and thermoelectric properties. ACS Appl Energy Mater 3:4983–4994

    Article  CAS  Google Scholar 

  54. Rakstys K, Abate A, Dar MI, Gao P, Jankauskas V, Jacopin G, Kamarauskas E, Kazim S, Ahmad S, Grätzel M, Nazeeruddin MK (2015) Triazatruxene-based hole transporting materials for highly efficient perovskite solar cells. J Am Chem Soc 137:16172–16178

    Article  CAS  PubMed  Google Scholar 

  55. Ginnari-Satriani L, Casagrande V, Bianco A, Ortaggi G, Franceschin M (2009) A hydrophilic three side-chained triazatruxene as a new strong and selective G-quadruplex ligand. Org Biomol Chem 7:2513–2516

    Article  CAS  PubMed  Google Scholar 

  56. Chen G, Zhao Q, Wang Z, Jiang M, Zhang L, Duan T, Zhu L (2022) Pitch-based porous polymer beads for highly efficient iodine capture. J Hazard Mater 434:128859

    Article  CAS  PubMed  Google Scholar 

  57. Ivanets A, Milyutin V, Shashkova I, Kitikova N, Nekrasova N, Radkevich A (2020) Sorption of stable and radioactive Cs(I), Sr(II), Co(II) ions on Ti–Ca–Mg phosphates. J Radioanal Nucl Chem 324:1115–1123

    Article  CAS  Google Scholar 

  58. Liu B, Ren X, Chen L, Ma X, Chen Q, Sun Q, Zhang L, Si P, Ci L (2019) High efficient adsorption and storage of iodine on S, N co-doped graphene aerogel. J Hazard Mater 373:705–715

    Article  CAS  PubMed  Google Scholar 

  59. Hikawa H, Kotaki F, Kikkawa S, Azumaya I (2019) Gold(III)-catalyzed decarboxylative C3-benzylation of indole-3-carboxylic acids with benzylic alcohols in water. J Org Chem 84(4):1972–1979

    Article  CAS  PubMed  Google Scholar 

  60. Zhu J, Chen Q, Sui Z, Pan L, Yu J, Han B (2014) Preparation and adsorption performance of cross-linked porous polycarbazoles. J Mater Chem A 2:16181–16189

    Article  CAS  Google Scholar 

  61. Zhang C, Zhu P, Tan L, Liu J, Tan B, Yang X, Xu H (2015) Triptycene-based hyper-cross-linked polymer sponge for gas storage and water treatment. Macromolecules 48:8509–8514

    Article  CAS  Google Scholar 

  62. Chen D, Fu Y, Yu W, Yu G, Pan C (2018) Versatile Adamantane-based porous polymers with enhanced microporosity for efficient CO2 capture and iodine removal. Chem Eng J 334:900–906

    Article  CAS  Google Scholar 

  63. Kouznetsova T, Sauka J, Ivanets A (2021) Template synthesis and gas adsorption properties of ordered mesoporous aluminosilicates. Appl Nanosci 11:1903–1915

    Article  CAS  Google Scholar 

  64. Pang P, Han H, Hu L, Guo C, Gao Y, Xie Y (2021) The calculations of pore structure parameters from gas adsorption experiments of shales: which models are better? J Nat Gas Sci Eng 94:104060

    Article  CAS  Google Scholar 

  65. Bardestani R, Patience GS, Kaliaguine S (2019) Experimental methods in chemical engineering: specific surface area and pore size distribution measurements—BET, BJH, and DFT. Can J Chem Eng 97:2781–2791

    Article  CAS  Google Scholar 

  66. Ryu Z, Zheng J, Wang M, Zhang B (1999) Characterization of pore size distributions on carbonaceous adsorbents by DFT. Carbon 37:1257–1264

    Article  CAS  Google Scholar 

  67. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465

    Article  CAS  Google Scholar 

  68. Khamizov RK (2020) A pseudo-second order kinetic equation for sorption processes. Russ J Phys Chem A 94:171–176

    Article  CAS  Google Scholar 

  69. Qian X, Zhu Z, Sun H, Ren F, Mu P, Liang W, Chen L, Li A (2016) Capture and reversible storage of volatile iodine by novel conjugated microporous polymers containing thiophene units. ACS Appl Mater Inter 8:21063–21069

    Article  CAS  Google Scholar 

  70. Huang Y, Li W, Xu Y, Ding M, Ding J, Zhang Y, Wang Y, Chen S, Jin Y, Xia C (2021) Rapid iodine adsorption from vapor phase and solution by a nitrogen-rich covalent piperazine-triazine-based polymer. New J Chem 45(12):5363–5370

    Article  CAS  Google Scholar 

  71. Wang Y, Tao J, Xiong S, Lu P, Tang J, He J, Javaid MU, Pan C, Yu G (2020) Ferrocene-based porous organic polymers for high-affinity iodine capture. Chem Eng J 380:122420

    Article  CAS  Google Scholar 

  72. Xu M, Wang T, Zhou L, Hua D (2020) Fluorescent conjugated mesoporous polymers with N, N-diethylpropylamine for the efficient capture and real-time detection of volatile iodine. J Mater Chem A 8(4):1966–1974

    Article  CAS  Google Scholar 

  73. Wang C, Wang Y, Ge R, Song X, Xing X, Jiang Q, Lu H, Hao C, Guo X, Gao Y, Jiang D (2018) A 3D covalent organic framework with exceptionally high iodine capture capability. Chem-Eur J 24(3):585–589

    Article  CAS  PubMed  Google Scholar 

  74. Lin J, Liang J, Feng J, Karadeniz B, Lü J, Cao R (2016) Iodine uptake and enhanced electrical conductivity in a porous coordination polymer based on cucurbit[6]uril. Inorg Chem Front 3(11):1393–1397

    Article  CAS  Google Scholar 

  75. De Wall SL, Meadows ES, Barbour LJ, Gokel GW (1999) Solution- and solid-state evidence for alkali metal cation−π interactions with indole, the side chain of tryptophan. J Am Chem Soc 121:5613–5614

    Article  Google Scholar 

  76. Schlamadinger DE, Daschbach MM, Gokel GW, Kim JE (2011) UV resonance raman study of cation-π interactions in an indole crown ether. J Raman Spectrosc 42(4):633–638

    Article  CAS  PubMed  Google Scholar 

  77. Svensson PH, Kloo L (2003) Synthesis, structure, and bonding in polyiodide and metal iodide−iodine systems. Chem Rev 103(5):1649–1684

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (21978188, 22278294, 21506143); Natural Science Foundation of Shanxi Province (20210302123191); Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi (2022L602).

Funding

National Natural Science Foundation of China,21978188,Jie Mi,22278294,Mengmeng Wu,21506143,Mengmeng Wu,Natural Science Foundation of Shanxi Province,20210302123191,Mengmeng Wu,Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi,2022L602,Luna Song

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mengmeng Wu or Jie Mi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1022 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Song, L., Wang, Y. et al. Three novel indole-based porous organic polymers for efficient iodine capture in water. J Radioanal Nucl Chem 332, 4271–4290 (2023). https://doi.org/10.1007/s10967-023-09115-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09115-9

Keywords

Navigation