Skip to main content
Log in

Template synthesis and gas adsorption properties of ordered mesoporous aluminosilicates

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Mesoporous aluminosilicates with diverse gas adsorption properties were obtained by template synthesis at standard conditions (25 °C, 101.3 kPa) using a simple topological and chemical complementarity approach, when the template is a micellar pyridinium quaternary matrix with different own counter-ions, bromide or chloride. The physicochemical properties of the samples were studied by low-temperature nitrogen adsorption–desorption, small-angle X-ray diffraction, Fourier-Transform Infrared spectroscopy (FTIR), and thermal analysis. The samples obtained at low Al2O3/SiO2 values had mesopores uniform in diameter with characteristic sizes in the range of 2–3 nm, combined into a supramolecular lattice with a single regular geometry similar to mesoporous molecular sieves MCM-48. Samples with an alumina content of up to 15% were characterized by high specific surface area ≈ 1000 m2/g and pore volume ≈ 0.80 cm3/g. The use of cetylpyridinium bromide as a template led to increase of aluminosilicates specific surface areas and mesopore volumes compared to the use of cetylpyridinium chloride.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barrer RM (1982) Hydrothermal chemistry of zeolites. Academic Press, London

    Google Scholar 

  • Barrett EP, Joyner LS, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380

    CAS  Google Scholar 

  • Belov NV (1961) Crystal chemistry of silicates with large cations. Russian Academy of Sciences Press, Moscow

    Google Scholar 

  • Breck DW (1974) Zeolite molecular sieves. Wiley, New York

    Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    CAS  Google Scholar 

  • Cui J, Yin J, Meng J, Liu Y, Liao M, Wu T, Dresselhaus M, Xie Y, Wu J, Li C, Zhang X (2021) Supermolecule cucurbituril subnanoporous carbon supercapacitor (SCSCS). Nano Lett 21:2156–2164

    CAS  Google Scholar 

  • Doustkhah E, Mohtasham H, Hasani M, Ide Y, Rostamnia S, Tsunoji N, Hussein Assadi MN (2020) Merging periodic mesoporous organosilica (PMO) with mesoporous aluminosilica (Al/Si-PMO): a catalyst for green oxidation. Molecular Catalysis 482:110676

    CAS  Google Scholar 

  • El-Safty SA, Mizukami F, Hanaoka T (2005) General and simple approach for control cage and cylindrical mesopores, and thermal/hydrothermal stable frameworks. Phys Chem B 109:9255–9264

    CAS  Google Scholar 

  • Flanigen EM (2001) Chapter 2 zeolites and molecular sieves: an historical perspective. Stud Surf Sci Catal 137:11–35

    CAS  Google Scholar 

  • Friedrichsberg DA (1984) Course of colloid chemistry. Khimiya, Leningrad

    Google Scholar 

  • Fu Z, Zhang G, Tang Z, Zhang H (2020) Preparation and application of ordered mesoporous metal oxide catalytic materials. Catal Surv Asia 24:38–58

    CAS  Google Scholar 

  • Gallo JMR, Bisio C, Gatti G, Marchese L, Pastore HO (2010) Physicochemical characterization and surface acid properties of mesoporous [Al]-SBA-15 obtained by direct synthesis. Langmuir 26:5791–5800

    CAS  Google Scholar 

  • Gao Q, Xu W, Xu Y, Wu D, Sun Y, Deng F, Shen W (2008) Amino acid adsorption on mesoporous materials: influence of types of amino acids, modification of mesoporous materials and solution conditions. J Phys Chem B 112:2261–2267

    CAS  Google Scholar 

  • Goscianska J, Nowak I, Olejnik A (2016) Sorptive properties of aluminium ions containing mesoporous silica towards L-histidine. Adsorption 22:571–579

    CAS  Google Scholar 

  • Gu X, Jiang T, Tao H, Zhou S, Liu X, Ren J, Wang Y, Lu G, Schmidt W (2011) Hydrothermally highly stable acidic mesoporous aluminosilicate spheres with radial channels. J Mater Chem 21:880–886

    CAS  Google Scholar 

  • Halasz I (ed) (2010) Silica and silicates in modern catalysis. Transworld Research Network, Kerala, pp 171–185

    Google Scholar 

  • Hoffmann F, Cornelius M, Morell J, Froeba M (2006) Silica-based mesoporous organic-inorganic hybrid materials. Angew Chem 45:3216–3251

    CAS  Google Scholar 

  • Hong X, Chen W, Zhang G, Wu Q, Lei C, Zhu Q, Meng X, Han S, Zheng A, Ma Y, Parvulescu AN, Muller U, Zhang W, Yokoi T, Bao X, Marler B, De Vos DT, Kolb U, Xiao FS (2019) Direct synthesis of aluminosilicate IWR zeolite from a strong interaction between zeolite framework and organic template. J Am Chem Soc 141:18318–18324

    CAS  Google Scholar 

  • Hussain M, Fino D, Russo N (2014) Development of modified KIT-6 and SBA-15 spherical supported Rh catalysts for N2O abatement: from powder to monolith supported catalysts. Chem Eng J 238:198–205

    CAS  Google Scholar 

  • Inagaki S, Fukushima Y, Kuroda K (1993) Synthesis of highly ordered mesoporous materials from a layered polysilicate. J Chem Soc, Chem Commun 8:680–682

    Google Scholar 

  • Karge HG, Weitkamp J (eds) (1998) Molecular sieves. Springer, Berlin, p 97

    Google Scholar 

  • Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712

    CAS  Google Scholar 

  • Kresge CT, Vartuli JC, Roth WJ, Leonowicz ME (2004) The discovery of Exxon Mobil’s M41S family of mesoporous molecular sieves. Stud Surf Sci Catal 148:53–72

    CAS  Google Scholar 

  • Krishna NV, Selvam P (2017) Acid-mediated synthesis of ordered mesoporous aluminosilicates: the challenge and the promise. Chem A Eur J 23:1604–1612

    CAS  Google Scholar 

  • Kuznetsova TF, Eremenko SI (2015) Effect of a template in the synthesis of multi-dimensional nanoporous aluminosilicate with the composition of 25% Al2O3-75% SiO2. Russ J Phys Chem A 8:1269–1274

    Google Scholar 

  • Lippens BC, de Boer JH (1965) Studies on pore systems in catalysts V. The t method. J Catal 4:319–323

    CAS  Google Scholar 

  • Liu M, Hou L, Xi B, Zhao Y, XiaX, (2013) Synthesis, characterization, and mercury adsorption properties of hybrid mesoporous aluminosilicate sieve prepared with fly ash. Appl Surf Sci 273:706–716

    CAS  Google Scholar 

  • Lowenstein W (1954) The distribution of aluminum in the tetrahedra of silicates and aluminates. Amer Mineral 39:92–96

    Google Scholar 

  • Luan Z, Hartmann M, Zhao D, Zhou W, Kevan L (1999) Alumination and ion exchange of mesoporous SBA-15 molecular sieves. Chem Mater 11:1621–1627

    CAS  Google Scholar 

  • Martın-Aranda RM, Cejka J (2010) Recent advances in catalysis over mesoporous molecular sieves. Top Catal 53:141–153

    Google Scholar 

  • Mata J, Varade D, Bahadur P (2005) Aggregation behavior of quaternary salt based cationic surfactants. Thermochim Acta 428:147–155

    CAS  Google Scholar 

  • Matthias T, Katsumi K, Alexander VN, James PO, Francisco R-R, Jean R, Kenneth SWS (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069

    Google Scholar 

  • Meng J, Li J, Liu J, Zhang X, Jiang G, Ma L, Mai L (2020a) Universal approach to fabricating graphene-supported single-atom catalysts from doped ZnO solid solutions. ACS Cent Sci. https://doi.org/10.1021/acscentsci.0c00458

    Article  Google Scholar 

  • Meng J, Liu Z, Liu X, Yang W, Wang L, Li Y, Mai L (2020b) Scalable fabrication and active site identification of MOF shell-derived nitrogen-doped carbon hollow frameworks for oxygen reduction. J Mater Sci Technol. https://doi.org/10.1016/j.jmst.2020.07.007

    Article  Google Scholar 

  • Meyer WM, Olson DH (1992) Atlas of zeolite structure types. Butterworth-Heinemann, London, pp 302–304

    Google Scholar 

  • Perego C, Millini R (2013) Porous materials in catalysis: challenges for mesoporous materials. Chem Soc Rev 42:3956–3976

    CAS  Google Scholar 

  • Pérez-Page M, Yu E, Li J, Rahman M, Dryden DM, Vidu R, Stroeve P (2016) Template-based syntheses for shape controlled nanostructures. Adv Coll Interface Sci 234:51–79

    Google Scholar 

  • Rouquerol J, Rouquerol F, Llewellyn P, Maurin G, Sing KSW (2013) Adsorption by powders and porous solids: principles, methodology and applications. Academic Press, p 646

    Google Scholar 

  • Saberi F, Rodríguez-Padrón D, Doustkhah E, Ostovar S, Franco A, Shaterian HR, Luque R (2019) Mechanochemically modified aluminosilicates for efficient oxidation of vanillyl alcohol. Catal Commun 18:65–69. https://doi.org/10.1016/j.catcom.2018.09.017

    Article  CAS  Google Scholar 

  • Salis A, Ninham BW (2014) Models and mechanisms of Hofmeister effects in electrolyte solutions, and colloid and protein systems revisited. Chem Soc Rev 43:7358–7377

    CAS  Google Scholar 

  • Santo VD, Guidotti M, Psaro R, Marchese L, Carniato F, Bisio Ch (2012) Rational design of single-site heterogeneous catalysts: towards high chemo-, regio- and stereoselectivity. Proc R Soc A 468:1904–1926

    Google Scholar 

  • Schüth F, Sing KSW, Weitkamp J (2002) Handbook of porous solids. Wiley-VCH Verlag GmbH: Weinheim, p 3191

    Google Scholar 

  • Sircar S (2002) Pressure swing adsorption. Ind Eng Chem Res 41(6):1389–1392

    CAS  Google Scholar 

  • Sobczak I, Goscianska J, Ziolek M, Grams J, Verrier C, Bazin P, Marie O, Daturi M (2006) WGS and reforming properties of NbMCM-41 materials. Catal Today 114:281–286

    CAS  Google Scholar 

  • Soda R (1961) Infrared absorption spectra of quartz and some other silica modification. Bull Chem Soc Jpn 34:1491–1495

    CAS  Google Scholar 

  • Szczęśniak B, Choma J, Jaroniec M (2020) Major advances in the development of ordered mesoporous materials. Chem Comm 1–31

  • Taguchi A, Schüth F (2005) Ordered mesoporous materials in catalysis. Microporous Mesoporous Mater 77:1–45

    CAS  Google Scholar 

  • Tao Y, Kanoh H, Abrams L, Kaneko K (2006) Mesopore-modified zeolites: preparation, characterization, and applications. Chem Rev 106:896–910

    CAS  Google Scholar 

  • Valtchev V, Mintova S, Tsapatsis M (eds) (2009) Ordered porous solids. Elsevier, Amsterdam, pp 669–692

    Google Scholar 

  • Wu J, Xu F, Li S, Ma P, Zhang X, Liu Q, Wu D (2018) Porous polymers as multifunctional material platforms toward task-specific applications. Adv Mater 31:1802922

    Google Scholar 

  • Xia Y, Mokaya R (2004) Aluminosilicate MCM-48 materials with enhanced stability via simple post-synthesis treatment in water. Microporous Mesoporous Mat 68:1–10

    CAS  Google Scholar 

  • Ying JY, Mehnert CP, Wong MS (1999) Synthesis and applications of supramolecular-templated mesoporous materials. Angew Chem Int Ed 38:56–77

    CAS  Google Scholar 

  • Zakharova MV, Kleitz F, Fontaine FG (2017) Lewis acidity quantification and catalytic activity of Ti, Zr and Al-supported mesoporous silica. Dalton Trans 46:3864–3876

    CAS  Google Scholar 

  • Zhang X (2021) Supermolecule cucurbituril subnanoporous carbon supercapacitor (SCSCS). Nano Lett 21:2156–2164

    Google Scholar 

  • Zhao D, Feng J, Huo Q, Melosh N, Frederickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552

    CAS  Google Scholar 

  • Zheng B, Lin X, Zhang X, Wu D, Matyjaszewski K (2019) Emerging functional porous polymeric and carbonaceous materials for environmental treatment and energy storage. Adv Funct Mater 30:1907006

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Ivanets.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kouznetsova, T., Sauka, J. & Ivanets, A. Template synthesis and gas adsorption properties of ordered mesoporous aluminosilicates. Appl Nanosci 11, 1903–1915 (2021). https://doi.org/10.1007/s13204-021-01871-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-021-01871-y

Keywords

Navigation