Skip to main content
Log in

Effective adsorption of U(VI) onto phosphate- and amine-linker-based organic polymer

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The efficient removal of uranium from aqueous solutions is critical for ecological safety. Herein, a novel phytic acid and melamine covalent polymer adsorbent (named PEM) was designed and synthesized through a simple one-pot method, and its adsorption performance and mechanism of U(VI) were systematically investigated. The maximum adsorption capacity on U(VI) achieved 505.05 mg g−1 at pH 4.0, calculated with the Langmuir model, which was much higher than most other adsorbents under the same environment. Importantly, the reaction reached equilibrium quickly in the initial 20 min at 298 K. The sorption process conformed to a pseudo-second-order kinetics model and Langmuir model, indicating that the chemisorption of the monolayer was dominant. Overall, the synthesized PEM could be utilized as an easy, efficient, less time-consuming material for the removal of uranium from acidic nuclear wastewater.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data and code availability

Data will be made available on request.

References

  1. He B, Yun Z, Shi J, Jiang G (2013) Research progress of heavy metal pollution in China: sources, analytical methods, status, and toxicity. Chin Sci Bull 58:134–140. https://doi.org/10.1007/s11434-012-5541-0

    Article  CAS  Google Scholar 

  2. Shi S, Qian Y, Mei P, Yuan Y, Jia N, Dong M, Fan J, Guo Z, Wang N (2020) Robust flexible poly(amidoxime) porous network membranes for highly efficient uranium extraction from seawater. Nano Energy 71:104629. https://doi.org/10.1016/j.nanoen.2020.104629

    Article  CAS  Google Scholar 

  3. Wang C-Z, Chai Z-F, Shi W-Q (2021) Ultrahigh affinity and selectivity nanotraps for uranium extraction from seawater. ACS Cent Sci 7:1602–1604. https://doi.org/10.1021/acscentsci.1c01118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gavrilescu M, Pavel LV, Cretescu I (2009) Characterization and remediation of soils contaminated with uranium. J Hazard Mater 163:475–510. https://doi.org/10.1016/j.jhazmat.2008.07.103

    Article  CAS  PubMed  Google Scholar 

  5. Xie Y, Chen C, Ren X, Wang X, Wang H, Wang X (2019) Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation. Prog Mater Sci 103:180–234. https://doi.org/10.1016/j.pmatsci.2019.01.005

    Article  CAS  Google Scholar 

  6. Moraes MLB, Ladeira ACQ (2021) The role of iron in the rare earth elements and uranium scavenging by Fe–Al-precipitates in acid mine drainage. Chemosphere 277:130131. https://doi.org/10.1016/j.chemosphere.2021.130131

    Article  CAS  PubMed  Google Scholar 

  7. Shen J, Schafer A (2014) Removal of fluoride and uranium by nanofiltration and reverse osmosis: a review. Chemosphere 117:679–691. https://doi.org/10.1016/j.chemosphere.2014.09.090

    Article  CAS  PubMed  Google Scholar 

  8. Zhang Q, Larson SL, Ballard JH, Cheah P, Kazery JA, Knotek-Smith HM, Han FX (2020) A novel laboratory simulation system to uncover the mechanisms of uranium upward transport in a desert landscape. MethodsX 7:100758. https://doi.org/10.1016/j.mex.2019.11.031

    Article  CAS  PubMed  Google Scholar 

  9. Saito T, Sato K, Yamazawa H (2021) Numerical reproduction of dissolved U concentrations in a PO(4)-treated column study of Hanford 300 area sediment using a simple ion exchange and immobile domain model. J Environ Radioact 237:106708. https://doi.org/10.1016/j.jenvrad.2021.106708

    Article  CAS  PubMed  Google Scholar 

  10. Jun B-M, Lee H-K, Park S, Kim T-J (2021) Purification of uranium-contaminated radioactive water by adsorption: a review on adsorbent materials. Sep Purif Technol 278:119675. https://doi.org/10.1016/j.seppur.2021.119675

    Article  CAS  Google Scholar 

  11. Kilinc E, Ozdemir S, Yalcin MS, Soylak M (2019) A magnetized fungal solid-phase extractor for the preconcentrations of uranium(VI) and thorium(IV) before their quantitation by ICP-OES. Mikrochim Acta 186:355. https://doi.org/10.1007/s00604-019-3474-x

    Article  CAS  PubMed  Google Scholar 

  12. Liu L, Liu J, Liu X, Dai C, Zhang Z, Song W, Chu Y (2019) Kinetic and equilibrium of U(VI) biosorption onto the resistant bacterium Bacillus amyloliquefaciens. J Environ Radioact 203:117–124. https://doi.org/10.1016/j.jenvrad.2019.03.008

    Article  CAS  PubMed  Google Scholar 

  13. Liu W, Dai X, Bai Z, Wang Y, Yang Z, Zhang L, Xu L, Chen L, Li Y, Gui D, Diwu J, Wang J, Zhou R, Chai Z, Wang S (2017) Highly sensitive and selective uranium detection in natural water systems using a luminescent mesoporous metal–organic framework equipped with abundant Lewis basic sites: a combined batch, X-ray absorption spectroscopy, and first principles simulation investigation. Environ Sci Technol 51:3911–3921. https://doi.org/10.1021/acs.est.6b06305

    Article  CAS  PubMed  Google Scholar 

  14. Ouchi K, Tsukahara T, Brandt A, Muto Y, Nabatame N, Kitatsuji Y (2021) Design of microchannel suitable for packing with anion exchange resins: uranium separation from seawater containing a large amount of cesium. Anal Sci 37:1789–1794. https://doi.org/10.2116/analsci.21P110

    Article  CAS  PubMed  Google Scholar 

  15. Niu CP, Zhang CR, Cui WR, Yi SM, Liang RP, Qiu JD (2022) A conveniently synthesized redox-active fluorescent covalent organic framework for selective detection and adsorption of uranium. J Hazard Mater 425:127951. https://doi.org/10.1016/j.jhazmat.2021.127951

    Article  CAS  PubMed  Google Scholar 

  16. Liu H, Fu T, Mao Y (2022) Metal–organic framework-based materials for adsorption and detection of uranium(VI) from aqueous solution. ACS Omega 7:14430–14456. https://doi.org/10.1021/acsomega.2c00597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liao J, Liu P, Xie Y, Zhang Y (2021) Metal oxide aerogels: preparation and application for the uranium removal from aqueous solution. Sci Total Environ 768:144212. https://doi.org/10.1016/j.scitotenv.2020.144212

    Article  CAS  PubMed  Google Scholar 

  18. Chen Z, He X, Li Q, Yang H, Liu Y, Wu L, Liu Z, Hu B, Wang X (2022) Low-temperature plasma induced phosphate groups onto coffee residue-derived porous carbon for efficient U(VI) extraction. J Environ Sci (China) 122:1–13. https://doi.org/10.1016/j.jes.2021.10.003

    Article  CAS  PubMed  Google Scholar 

  19. Yang LX, Feng XF, Yin WH, Tao Y, Wu HQ, Li JQ, Ma LF, Luo F (2018) Metal–organic framework containing both azo and amide groups for effective U(VI) removal. J Solid State Chem 265:148–154. https://doi.org/10.1016/j.jssc.2018.05.040

    Article  CAS  Google Scholar 

  20. Ismail AF, Yim M-S (2015) Investigation of activated carbon adsorbent electrode for electrosorption-based uranium extraction from seawater. Nucl Eng Technol 47:579–587. https://doi.org/10.1016/j.net.2015.02.002

    Article  Google Scholar 

  21. Baybaş D, Ulusoy U (2011) The use of polyacrylamide-aluminosilicate composites for thorium adsorption. Appl Clay Sci 51:138–146. https://doi.org/10.1016/j.clay.2010.11.020

    Article  CAS  Google Scholar 

  22. Tang N, Liang J, Niu C, Wang H, Luo Y, Xing W, Ye S, Liang C, Guo H, Guo J, Zhang Y, Zeng G (2020) Amidoxime-based materials for uranium recovery and removal. J Mater Chem A 8:7588–7625. https://doi.org/10.1039/C9TA14082D

    Article  CAS  Google Scholar 

  23. Kabay N, Demircioǧlu M, Yaylı S, Günay E, Yüksel M, Saǧlam M, Streat M (1998) Recovery of uranium from phosphoric acid solutions using chelating ion-exchange resins. Ind Eng Chem Res 37:1983–1990. https://doi.org/10.1021/ie970518k

    Article  CAS  Google Scholar 

  24. Yu J, Yuan L, Wang S, Lan J, Zheng L, Xu C, Chen J, Wang L, Huang Z, Tao W, Liu Z, Chai Z, Gibson John K, Shi W (2019) Phosphonate-decorated covalent organic frameworks for actinide extraction: a breakthrough under highly acidic conditions. CCS Chem 1:286–295. https://doi.org/10.31635/ccschem.019.20190005

    Article  CAS  Google Scholar 

  25. Yu J, Lan J, Wang S, Zhang P, Liu K, Yuan L, Chai Z, Shi W (2021) Robust covalent organic frameworks with tailor-made chelating sites for synergistic capture of U(VI) ions from highly acidic radioactive waste. Dalton Trans 50:3792–3796. https://doi.org/10.1039/D1DT00186H

    Article  CAS  PubMed  Google Scholar 

  26. Budnyak TM, Gładysz-Płaska A, Strizhak AV, Sternik D, Komarov IV, Majdan M, Tertykh VA (2018) Imidazole-2yl-phosphonic acid derivative grafted onto mesoporous silica surface as a novel highly effective sorbent for uranium(VI) ion extraction. ACS Appl Mater Interfaces 10:6681–6693. https://doi.org/10.1021/acsami.7b17594

    Article  CAS  PubMed  Google Scholar 

  27. Jayakumar R, Selvamurugan N, Nair SV, Tokura S, Tamura H (2008) Preparative methods of phosphorylated chitin and chitosan—an overview. Int J Biol Macromol 43:221–225. https://doi.org/10.1016/j.ijbiomac.2008.07.004

    Article  CAS  PubMed  Google Scholar 

  28. Li H, Li Y, Zhou Y, Li B, Liu D, Liao H (2019) Efficient removal of uranium using a melamine/trimesic acid-modified hydrothermal carbon-based supramolecular organic framework. J Colloid Interface Sci 544:14–24. https://doi.org/10.1016/j.jcis.2019.02.079

    Article  CAS  PubMed  Google Scholar 

  29. Wang X, Li R, Liu J, Chen R, Zhang H, Liu Q, Li Z, Wang J (2017) Melamine modified graphene hydrogels for the removal of uranium(VI) from aqueous solution. New J Chem 41:10899–10907. https://doi.org/10.1039/C7NJ01927K

    Article  CAS  Google Scholar 

  30. Huang J, Liu Z, Huang D, Jin T, Qian Y (2022) Efficient removal of uranium (VI) with a phytic acid-doped polypyrrole/carbon felt electrode using double potential step technique. J Hazard Mater 433:128775. https://doi.org/10.1016/j.jhazmat.2022.128775

    Article  CAS  PubMed  Google Scholar 

  31. Pan N, Jin Y, Wang X, Hu X, Chi F, Zou H, Xia C (2019) A self-assembled supramolecular material containing phosphoric acid for ultrafast and efficient capture of uranium from acidic solutions. ACS Sustain Chem Eng 7:950–960. https://doi.org/10.1021/acssuschemeng.8b04596

    Article  CAS  Google Scholar 

  32. Li G, Shang Y, Wang Y, Wang L, Chao Y, Qi Y (2019) Reaction mechanism of etherification of rice straw with epichlorohydrin in alkaline medium. Sci Rep 9:14307. https://doi.org/10.1038/s41598-019-50860-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dave G, Modi H (2018) FT-IR method for estimation of phytic acid content during bread-making process. J Food Meas Charact 12:2202–2208. https://doi.org/10.1007/s11694-018-9836-y

    Article  Google Scholar 

  34. Pande R, Mishra HN (2015) Fourier transform near-infrared spectroscopy for rapid and simple determination of phytic acid content in green gram seeds (Vigna radiata). Food Chem 172:880–884. https://doi.org/10.1016/j.foodchem.2014.09.049

    Article  CAS  PubMed  Google Scholar 

  35. Yang S, Zhang B, Liu M, Yang Y, Liu X, Chen D, Wang B, Tang G, Liu X (2021) Fire performance of piperazine phytate modified rigid polyurethane foam composites. Polym Adv Technol 32:4531–4546. https://doi.org/10.1002/pat.5454

    Article  CAS  Google Scholar 

  36. Idris SA, Davidson CM, McManamon C, Morris MA, Anderson P, Gibson LT (2011) Large pore diameter MCM-41 and its application for lead removal from aqueous media. J Hazard Mater 185:898–904. https://doi.org/10.1016/j.jhazmat.2010.09.105

    Article  CAS  PubMed  Google Scholar 

  37. Zhang J-Y, Zhang N, Zhang L, Fang Y, Deng W, Yu M, Wang Z, Li L, Liu X, Li J (2015) Adsorption of uranyl ions on amine-functionalization of MIL-101(Cr) nanoparticles by a facile coordination-based post-synthetic strategy and X-ray absorption spectroscopy studies. Sci Rep 5:13514. https://doi.org/10.1038/srep13514

    Article  PubMed  PubMed Central  Google Scholar 

  38. Xiong T, Li Q, Liao J, Zhang Y, Zhu W (2022) Highly enhanced adsorption performance to uranium(VI) by facile synthesized hydroxyapatite aerogel. J Hazard Mater 423:127184. https://doi.org/10.1016/j.jhazmat.2021.127184

    Article  CAS  PubMed  Google Scholar 

  39. Liu J, Zhao C, Zhang Z, Liao J, Liu Y, Cao X, Yang J, Yang Y, Liu N (2016) Fluorine effects on U(VI) sorption by hydroxyapatite. Chem Eng J 288:505–515. https://doi.org/10.1016/j.cej.2015.12.045

    Article  CAS  Google Scholar 

  40. Wang LL, Luo F, Dang LL, Li JQ, Wu XL, Liu SJ, Luo MB (2015) Correction: ultrafast high-performance extraction of uranium from seawater without pretreatment using an acylamide- and carboxyl-functionalized metal–organic framework. J Mater Chem A 3:17880–17880. https://doi.org/10.1039/C5TA90169C

    Article  CAS  Google Scholar 

  41. Wen J, Li Q, Li H, Chen M, Hu S, Cheng H (2018) Nano-TiO2 imparts amidoximated wool fibers with good antibacterial activity and adsorption capacity for uranium(VI) recovery. Ind Eng Chem Res 57:1826–1833. https://doi.org/10.1021/acs.iecr.7b04380

    Article  CAS  Google Scholar 

  42. Zeng D, Yuan L, Zhang P, Wang L, Li Z, Wang Y, Liu Y, Shi W (2021) Hydrolytically stable foamed HKUST-1@CMC composites realize high-efficient separation of U(VI). iScience 24:102982. https://doi.org/10.1016/j.isci.2021.102982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhao B, Yuan L, Wang Y, Duan T, Shi W (2021) Carboxylated UiO-66 tailored for U(VI) and Eu(III) trapping: from batch adsorption to dynamic column separation. ACS Appl Mater Interfaces 13:16300–16308. https://doi.org/10.1021/acsami.1c00364

    Article  CAS  PubMed  Google Scholar 

  44. Meng J, Lin X, Zhou J, Zhang R, Chen Y, Long X, Shang R, Luo X (2019) Preparation of tannin-immobilized gelatin/PVA nanofiber band for extraction of uranium(VI) from simulated seawater. Ecotoxicol Environ Saf 170:9–17. https://doi.org/10.1016/j.ecoenv.2018.11.089

    Article  CAS  PubMed  Google Scholar 

  45. Li W, Chen R, Liu Q, Liu J, Yu J, Zhang H, Li R, Zhang M, Wang J (2018) Hierarchical Ni–Al layered double hydroxide in situ anchored onto polyethylenimine-functionalized fibers for efficient U(VI) capture. ACS Sustain Chem Eng 6:13385–13394. https://doi.org/10.1021/acssuschemeng.8b03183

    Article  CAS  Google Scholar 

  46. Li L, Huang S, Wen T, Ma R, Yin L, Li J, Chen Z, Hayat T, Hu B, Wang X (2019) Fabrication of carboxyl and amino functionalized carbonaceous microspheres and their enhanced adsorption behaviors of U(VI). J Colloid Interface Sci 543:225–236. https://doi.org/10.1016/j.jcis.2019.02.060

    Article  CAS  PubMed  Google Scholar 

  47. Liang L, Zhang H, Lin X, Yan K, Li M, Pan X, Hu Y, Chen Y, Luo X, Shang R (2021) Phytic acid-decorated porous organic polymer for uranium extraction under highly acidic conditions. Colloids Surf A. https://doi.org/10.1016/j.colsurfa.2021.126981

    Article  Google Scholar 

  48. Zhang Z, Dong Z, Wang X, Dai Y, Cao X, Wang Y, Hua R, Feng H, Chen J, Liu Y, Hu B, Wang X (2019) Synthesis of ultralight phosphorylated carbon aerogel for efficient removal of U(VI): batch and fixed-bed column studies. Chem Eng J 370:1376–1387. https://doi.org/10.1016/j.cej.2019.04.012

    Article  CAS  Google Scholar 

  49. Yuan L-Y, Zhu L, Xiao C-L, Wu Q-Y, Zhang N, Yu J-P, Chai Z-F, Shi W-Q (2017) Large-pore 3D cubic mesoporous (KIT-6) hybrid bearing a hard-soft donor combined ligand for enhancing U(VI) capture: an experimental and theoretical investigation. ACS Appl Mater Interfaces 9:3774–3784. https://doi.org/10.1021/acsami.6b15642

    Article  CAS  PubMed  Google Scholar 

  50. Zhu L, Yuan L-Y, Xia L-S, Wang L (2016) Incorporation of magnetism into the dihydroimidazole functionalized mesoporous silica for convenient U(VI) capture. J Radioanal Nucl Chem 308:447–458. https://doi.org/10.1007/s10967-015-4391-z

    Article  CAS  Google Scholar 

  51. Bagnall KW, Wakerley MW (1975) Infrared and Raman spectra of the uranyl ion. J Inorg Nucl Chem 37:329–330. https://doi.org/10.1016/0022-1902(75)80194-1

    Article  CAS  Google Scholar 

  52. Huynh J, Palacio R, Safizadeh F, Lefevre G, Descostes M, Eloy L, Guignard N, Rousseau J, Royer S, Tertre E, Batonneau-Gener I (2017) Adsorption of uranium over NH2-functionalized ordered silica in aqueous solutions. ACS Appl Mater Interfaces 9:15672–15684. https://doi.org/10.1021/acsami.6b16158

    Article  CAS  PubMed  Google Scholar 

  53. Tovar-Valdín G, Ordóñez-Regil E, Almazán-Torres M-G, Martínez-Gallegos S (2018) Synthesis and characterization of phytate–uranium(VI) complexes. J Radioanal Nucl Chem 318:2129–2137. https://doi.org/10.1007/s10967-018-6296-0

    Article  CAS  Google Scholar 

  54. Stevens JS, Byard SJ, Seaton CC, Sadiq G, Davey RJ, Schroeder SLM (2014) Proton transfer and hydrogen bonding in the organic solid state: a combined XRD/XPS/ssNMR study of 17 organic acid–base complexes. Phys Chem Chem Phys 16:1150–1160. https://doi.org/10.1039/C3CP53907E

    Article  CAS  PubMed  Google Scholar 

  55. Qiang S, Wang J, Wang Y, Yuan L, Shi L, Ding Z, Wang W, Liang J, Li P, Fan Q (2022) Analysis of the uranium chemical state by XPS: Is what you see real? Appl Surf Sci 576:151886. https://doi.org/10.1016/j.apsusc.2021.151886

    Article  CAS  Google Scholar 

  56. Ding L, Chen B, Wang Y, Zhang Y (2022) High efficiency adsorption of uranium in solution using nano-TiO2 loaded with g-C3N4. Process Saf Environ Prot 168:1049–1057. https://doi.org/10.1016/j.psep.2022.10.055

    Article  CAS  Google Scholar 

  57. Xiong T, Jia L, Li Q, Zhang Y, Zhu W (2022) Highly efficient adsorptive extraction of uranium from wastewater by novel kaolin aerogel. Sci Total Environ 842:156916. https://doi.org/10.1016/j.scitotenv.2022.156916

    Article  CAS  PubMed  Google Scholar 

  58. Zheng T, Wu Q-Y, Gao Y, Gui D, Qiu S, Chen L, Sheng D, Diwu J, Shi W-Q, Chai Z, Albrecht-Schmitt TE, Wang S (2015) Probing the influence of phosphonate bonding modes to uranium(VI) on structural topology and stability: a complementary experimental and computational investigation. Inorg Chem 54:3864–3874. https://doi.org/10.1021/acs.inorgchem.5b00024

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22076155, 21976148, 11905177); Sichuan Science and Technology Program (2020JDRC0068); the Project of Science and Technology Department of Sichuan Province (No. 2021JDTD0019); the Project of State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology (Nos. 18fksy0215, 20fksy12); Undergraduate Innovation Fund Project of Southwest University of Science and Technology (CX22-016).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: YW; Methodology: YW; Investigation: YW, SD, WS; Validation, formal analysis, and data curation: YW, SD, WS; Writing—original draft preparation: YW, SD, WS; Supervision, LZ; Project administration: TD, LZ; Funding acquisition: TD, LZ. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Tao Duan or Lin Zhu.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Ethical approval

Ethical approval does not apply to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 415 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Duan, S., Song, W. et al. Effective adsorption of U(VI) onto phosphate- and amine-linker-based organic polymer. J Radioanal Nucl Chem 332, 4179–4190 (2023). https://doi.org/10.1007/s10967-023-09100-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09100-2

Keywords

Navigation