Skip to main content

Advertisement

Log in

Highly selective capture of phosphate ions from water by a water stable metal-organic framework modified with polyethyleneimine

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this work, a series of polyethyleneimine (PEI) impregnated metal-organic framework (UiO-66) with varying PEI loadings were prepared and applied as sorbents to capture phosphate ions from water. As indicated by SEM and XRD analysis, PEI was dispersed on the outer surface and the inner pores of UiO-66. At 9.45% PEI loadings (UiO-66-3), the saturated adsorption capacity of phosphate reached 73.15 mg P/g at 298 K, which is superior to most sorbents ever reported. UiO-66-3 could sequestrate phosphate over a wide pH range from 2.0 to 7.0 with high efficiency. The sorption toward phosphate reached equilibrium in 50 min. Unlike commercial anion exchanger IRA-900, UiO-66-3 still exhibited high removal toward phosphate even large amount of coexisted anions were present. Successive sorption assay demonstrated that the removal efficiency of UiO-66-3 toward phosphate remained constant after six cyclic runs. All the above results indicated the great potential of UiO-66-3 as a promising sorbent for the decontamination of water from phosphate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Attour A, Touati M, Tlili M, Amor MB, Lapicque F, Leclerc JP (2014) Influence of operating parameters on phosphate removal from water by electrocoagulation using aluminum electrodes. Sep Sci Technol 123:124–129

    CAS  Google Scholar 

  • Awual MR, Jyo A, El-Safty SA, Tamada M, Seko N (2011) A weak-base fibrous anion exchanger effective for rapid phosphate removal from water. J Hazard Mater 188:164–171

    Article  CAS  Google Scholar 

  • Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130:13850–13851

    Article  Google Scholar 

  • Desmidt E, Ghyselbrecht K, Zhang Y, Pinoy L, Bruggen BVD, Verstraete W, Rabaey K, Meesschaert B (2015) Global phosphorus scarcity and full-scale precovery techniques: a review. Crit Rev Environ Sci Technol 45:336–384

    Article  CAS  Google Scholar 

  • Gifford M, Liu JY, Rittmann BE, Vannela R, Westerhoff P (2015) Phosphorus recovery from microbial biofuel residual using microwave peroxide digestion and anion exchange. Water Res 70:130–137

    Article  CAS  Google Scholar 

  • Hamdi N, Srasra E (2012) Removal of phosphate ions from aqueous solution using Tunisian clays minerals and synthetic zeolite. J Environ Sci 24(4):617–623

    Article  CAS  Google Scholar 

  • Hutnik N, Kozik A, Mazienczuk A, Piotrowski K, Wierzbowska B, Matynia A (2013) Phosphates (V) recovery from phosphorus mineral fertilizers industry wastewater by continuous struvite reaction crystallization process. Water Res 47:3635–3643

    Article  CAS  Google Scholar 

  • Hwang YK, Hong DY, Chang JS, Jhung SH, Seo YK, Kim J, Vimont A, Daturi M, Serre C, Ferey G (2008) Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. Angew Chem Int Edit 47:4144–4148

    Article  CAS  Google Scholar 

  • Kumar P, Sudha S, Chand S, Srivastava VC (2010) Phosphate removal from aqueous solution using coir-pith activated carbon. Sep Sci Technol 45:1463–1470

    Article  CAS  Google Scholar 

  • Li HC, Shan C, Zhang YY, Cai JG, Zhang WM, Pan BC (2016) Arsenate adsorption by hydrous ferric oxide nanoparticles embedded in crosslinked anion exchanger: effect of the host pore structure. ACS Appl Mater Interfaces 8:3012–3020

    Article  CAS  Google Scholar 

  • Liu XL, Demir NK, Wu ZT, Li K (2015) Highly water-stable zirconium metal–organic framework uio-66 membranes supported on alumina hollow fibers for desalination. J Am Chem Soc 137(22):6999–7002

    Article  CAS  Google Scholar 

  • Lin Y, Kong C, Chen L (2012) Direct synthesis of amine-functionalized MIL-101(Cr) nanoparticles and application for CO2 capture. RSC Adv 2:6417–6419

    Article  CAS  Google Scholar 

  • Lin YC, Yan QJ, Kong CL, Chen L (2013) Polyethyleneimine incorporated metal-organic frameworks adsorbent for highly selective CO2 capture. Sci Rep 3:1859–1866

    Article  Google Scholar 

  • Mcdonald TM, Lee WR, Mason JA, Wiers CS, Long JR (2012) Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2(dobpdc). J Am Chem Soc 134:7056–7065

    Article  CAS  Google Scholar 

  • Oehmen A, Lemos PC, Carvalho G, Yuan ZG, Keller J, Blackall LL, Reis MAM (2007) Advances in enhanced biological phosphorus removal: from micro to macro scale. Water Res 41:2271–2300

    Article  CAS  Google Scholar 

  • Pan BJ, Wu J, Pan BC, Lv L, Zhang WM, Xiao LL, Wang XS, Tao XC, Zheng SR (2009) Development of polymer-based nanosized hydrated ferric oxides (HFOs) for enhanced phosphate removal from waste effluents. Water Res 43:4421–4429

    Article  CAS  Google Scholar 

  • Piscopo CG, Polyzoidis A, Schwarzer M, Loebbecke S (2015) Stability of UiO-66 under acidic treatment: opportunities and limitations for post-synthetic modifications. Micropor Mesopor Mat 208:30–35

    Article  CAS  Google Scholar 

  • Qiu H, Lv L, Pan BC, Zhang QJ, Zhang WM (2009) Zhang QX (2009) critical review in adsorption kinetic models. J Zhejiang Univ Sci A 10:716–724

    Article  CAS  Google Scholar 

  • Qiu H, Liang C, Zhang XL, Chen MD, Zhao YX, Tao T, Xu ZW, Liu G (2015) Fabrication of a biomass-based hydrous zirconium oxide nanocomposite for preferable phosphate removal and recovery. ACS Appl Mater Interfaces 7:20835–20844

    Article  CAS  Google Scholar 

  • Schick J, Caullet P, Paillaud JL, Patarin J, Freitag S, Mangold-callarec C (2012) Phosphate uptake from water on a surfactant-modified zeolite and ca-zeolites. J Porous Mater 19:405–414

    Article  CAS  Google Scholar 

  • Schindler DW, Hecky RE, Findlay DL, Stainton MP, Parker BR, Paterson MJ, Beaty KG, Lyng M, Kasian SEM (2008) Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. P Natl Acad Sci USA 105(32):11254–11258

    Article  CAS  Google Scholar 

  • Song W, Gao BY, Xu X, Wang F, Xue N, Sun SL, Song WC, Jia RB (2016) Adsorption of nitrate from aqueous solution by magnetic amine-crosslinked biopolymer based corn stalk and its chemical regeneration property. J Hazard Mater 304:280–290

    Article  CAS  Google Scholar 

  • Vermoortele F, Bueken B, Le BG, Van de VB, Vandichel M, Houthoofd K, Vimont A, Daturi M, Van S, Devos D (2013) Synthesis modulation as a tool to increase the catalytic activity of metal-organic frameworks: the unique case of UiO-66(Zr). J Am Chem Soc 135:11465–11468

    Article  CAS  Google Scholar 

  • Wan SL, He F, Wu JY, Wan WB, Gu YW, Gao B (2016) Rapid and highly selective removal of lead from water using graphene oxide-hydrated manganese oxide nanocomposites. J Hazard Mater 314:32–40

    Article  CAS  Google Scholar 

  • Wang CH, Liu XL, Chen JP, Li K (2015) Superior removal of arsenic from water with zirconium metal-organic framework UiO-66. Sci Rep 5:16613–16623

    Article  CAS  Google Scholar 

  • Wang ZF, Nie E, Li JH, Yang M, Zhao YJ, Luo XZ, Zheng Z (2012) Equilibrium and kinetics of adsorption of phosphate onto iron-doped activated carbon. Environ Sci Pollut R 19:2908–2917

    Article  CAS  Google Scholar 

  • Xie J, Lin Y, Li CJ, Wu DY, Kong HN (2015) Removal and recovery of phosphate from water by activated aluminum oxide and lanthanum oxide. Powder Technol 269:351–357

    Article  CAS  Google Scholar 

  • Yang S, Jin P, Wang X, Zhang Q, Chen X (2016) Phosphate recovery through adsorption assisted precipitation using novel precipitation material developed from building waste: behavior and mechanism. Chem Eng J 292:246–254

    Article  CAS  Google Scholar 

  • Yang WJ, Ding P, Zhou L, Yu JG, Chen XQ, Jiao FP (2013) Preparation of diamine modified mesoporous silica on multi-walled carbon nanotubes for the adsorption of heavy metals in aqueous solution. Appl Surf Sci 282:38–45

    Article  CAS  Google Scholar 

  • Yee KK, Reimer N, Liu J, Cheng SY, Yiu SM, Weber J, Stock N, Xu ZT (2013) Effective mercury sorption by thiol-laced metal−organic frameworks: in strong acid and the vapor phase. J Am Chem Soc 135:7795–7798

    Article  CAS  Google Scholar 

  • Yuan D, Zhao D, Sun D, Zhou HC (2010) An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angew Chem Int Edit 49:5357–5361

    Article  CAS  Google Scholar 

  • Zamparas M, Gianni A, Stathi P, Deligiannakis Y, Zacharias I (2012) Removal of phosphate from natural waters using innovative modified bentonites. Appl Clay Sci 62:101–106

    Article  Google Scholar 

  • Zhang QR, Du Q, Hua M, Jiao TF, Gao FM, Pan BC (2013) Sorption enhancement of lead ions from water by surface charged polystyrene-supported nano-zirconium oxide composites. Environ Sci Technol 47:6536–6544

    Article  CAS  Google Scholar 

  • Zhang QR, Teng J, Zou GD, Peng QM, Du Q, Jiao TF, Xiang JY (2016) Efficient phosphate sequestration for water purification by unique sandwich-like MXene/magnetic iron oxide nanocomposites. Nano 8(13):7085–7093

    CAS  Google Scholar 

  • Zhang QR, Li YX, Phanlavong P, Wang ZK, Jiao TF, Qiu H, Peng QM (2017a) Highly efficient and rapid fluoride scavenger using an acid/base tolerant zirconium phosphate nanoflake: behavior and mechanism. J Clean Prod 161:317–326

    Article  CAS  Google Scholar 

  • Zhang QR, Yang QG, Phanlavong P, Li YX, Wang ZK, Jiao TF, Peng QM (2017b) Highly efficient lead(II) sequestration using size-controllable polydopamine microspheres with superior application capability and rapid capture. ACS Sustain Chem Eng 5:4161–4170

    Article  CAS  Google Scholar 

  • Zhu QL, Xu Q (2014) Metal-organic framework composites. Chem Soc Rev 43:5468–5512

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by NSFC (21607080, 51608277, 11305091), Jiangsu NSF (BK20160946, BK20150892), and Jiangsu Higher Education Institution NSF (16KJB610011, 15KJB610012). Meanwhile, this research was supported by A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Engineering Technology Research Center of Environmental Cleaning Materials, The Open Project of Jiangsu Engineering Technology Research Center of Environmental Cleaning Materials (No. KFK1506), and the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology (No. 2014r021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Qiu.

Additional information

Responsible editor: Guilherme L. Dotto

Electronic supplementary material

ESM 1

(DOCX 374 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, H., Yang, L., Liu, F. et al. Highly selective capture of phosphate ions from water by a water stable metal-organic framework modified with polyethyleneimine. Environ Sci Pollut Res 24, 23694–23703 (2017). https://doi.org/10.1007/s11356-017-9946-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9946-9

Keywords

Navigation