Skip to main content
Log in

Wide energy region efficiency calibration study of a prompt gamma activation analysis facility

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A new prompt gamma activation analysis facility has been established using the China Mianyang Research Reactor (CMRR) to enable high-precision measurement and analysis of elements. The efficiency calibration of detection system is a vital factor affecting the accuracy. In this work, Monte Carlo method with accurate modeling was utilized to simulate the absolute detection efficiency of HPGe γ spectrometer covering a wide energy range of 81 keV to 10 MeV. A combination of various standard radioactive sources and nuclear reactions on the cold neutron beams was employed to experimentally measure the absolute detection efficiency of HPGe and anti-Compton systems in a wide energy region. The results show that the experimental results are in good agreement with the simulation results, and the absolute detection efficiency curves of the three are consistent. The content of H element in NH4Cl and Zr alloy samples was accurately measured by the efficiency function, which further verifies the accuracy of the efficiency calibration. A method of combining Monte Carlo simulation and experiment was used to improve the measurement accuracy for samples with complex geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Molnar G (2004) Handbook of prompt gamma activation analysis: with neutron beams, vol 1. Springer, Berlin

    Book  Google Scholar 

  2. Lindstrom RM, Révay Z (2017) Prompt gamma neutron activation analysis (PGAA): recent developments and applications. J Radioanal Nucl Chem 314:843–858

    Article  CAS  Google Scholar 

  3. Garcia-Reyna MG, Vega-Carrillo HR, Vazquez-Bañuelos J, Torres-Cortes CO, Campillo-Rivera GE, Marquez-Mata CA (2021) Prompt gamma-rays in three H-rich moderators exposed to neutrons. Progr Nucl Energy 137:103789. https://doi.org/10.1016/j.pnucene.2021.103789

    Article  CAS  Google Scholar 

  4. Lim C, Sowerby B (2005) On-line bulk elemental analysis in the resource industries using neutron-gamma techniques. J Radioanal Nucl Chem 264:15–19

    Article  CAS  Google Scholar 

  5. Freitas M, Revay Z, Szentmiklósi L, Dionísio I, Dung H, Pacheco A (2008) Different methodologies in neutron activation to approach the full analysis of environmental and nutritional samples. J Radioanal Nucl Chem 278:381–386

    Article  CAS  Google Scholar 

  6. Fan J, Xu J, Wang C (2020) Overview of industrial materials detection based on prompt gamma neutron activation analysis technology. World J Eng Technol 8:389

    Article  Google Scholar 

  7. Révay Z, Firestone RB, Belgya T, Molnár GL (2004) Prompt gamma-ray spectrum catalog. Handbook of prompt gamma activation analysis: with neutron beams. Springer, Boston, pp 173–364

    Chapter  Google Scholar 

  8. Kudejova P, Meierhofer G, Zeitelhack K, Jolie J, Schulze R, Türler A, Materna T (2008) The new PGAA and PGAI facility at the research reactor FRM II in Garching near Munich. J Radioanal Nucl Chem 278:691–695

    Article  CAS  Google Scholar 

  9. Canella L, Kudějová P, Schulze R, Türler A, Jolie J (2011) Characterisation and optimisation of the new prompt gamma-ray activation analysis (PGAA) facility at FRM II. Nucl Instrum Methods Phys Res, Sect A 636:108–113

    Article  CAS  Google Scholar 

  10. Belgya T, Kis Z, Szentmiklósi L (2014) Neutron flux characterization of the cold beam PGAA-NIPS facility at the Budapest research reactor. Nucl Data Sheets 119:419–421

    Article  CAS  Google Scholar 

  11. Kis Z, Szentmiklósi L, Belgya T (2015) NIPS–NORMA station—A combined facility for neutron-based nondestructive element analysis and imaging at the Budapest Neutron Centre. Nucl Instrum Methods Phys Res, Sect A 779:116–123

    Article  CAS  Google Scholar 

  12. Révay Z, Kudějová P, Kleszcz K, Söllradl S, Genreith C (2015) In-beam activation analysis facility at MLZ, Garching. Nucl Instrum Methods Phys Res, Sect A 799:114–123

    Article  Google Scholar 

  13. Szentmiklósi L, Maróti B, Kis Z (2021) Prompt-gamma activation analysis and neutron imaging of layered metal structures. Nucl Instrum Methods Phys Res, Sect A 1011:165589

    Article  Google Scholar 

  14. Kasztovszky Z, Stieghorst C, Chen-Mayer HH, Livingston RA, Lindstrom RM (2022) Prompt-gamma activation analysis and its application to cultural heritage. Handbook of cultural heritage analysis. Springer, Berlin, pp 95–143

    Chapter  Google Scholar 

  15. Acharya R, Nair A, Sudarshan K, Goswami A, Reddy A (2008) Development and applications of k 0 based NAA and prompt gamma-ray NAA methods at BARC. J Radioanal Nucl Chem 278:617–620

    Article  CAS  Google Scholar 

  16. Toh Y, Oshima M, Furutaka K, Kimura A, Koizumi M, Hatsukawa Y, Goto J (2008) Development of a neutron beam line and detector system for multiple prompt gamma-ray analysis. J Radioanal Nucl Chem 278:703–706

    Article  CAS  Google Scholar 

  17. Guerra BT, Jacimovic R, Menezes MAB, Leal AS (2013) Proposed design for the PGAA facility at the TRIGA IPR-R1 research reactor. Springerplus 2:1–10

    Article  Google Scholar 

  18. Paul RL, Şahin D, Cook JC, Brocker C, Lindstrom RM, O’Kelly DJ (2015) NGD cold-neutron prompt gamma-ray activation analysis spectrometer at NIST. J Radioanal Nucl Chem 304:189–193

    Article  CAS  Google Scholar 

  19. Mackey EA, Anderson D, Liposky P, Lindstrom RM, Chen-Mayer H, Lamaze GP (2004) New thermal neutron prompt γ-ray activation analysis instrument at the National Institute of Standards and Technology Center for Neutron Research. Nucl Instrum Methods Phys Res, Sect B 226:426–440

    Article  CAS  Google Scholar 

  20. Sun H, Ni B, Xiao C, Zhang G, Liu C, Huang J (2011) Design of a prompt-gamma neutron activation analysis system on China Advanced Research Reactor. Nucl Sci Tech 22:287–292

    CAS  Google Scholar 

  21. Ni B, Xiao C, Huang D, Sun H, Zhang G, Liu C, Wang P, Zhang H, Tian W (2012) A brief introduction to NAA facilities of China advance research reactor at CIAE. J Radioanal Nucl Chem 291:313–319

    Article  CAS  Google Scholar 

  22. Szentmiklosi L, Berlizov AN (2009) Characterization of the Budapest prompt-gamma spectrometer by Monte Carlo simulations. Nucl Instrum Methods Phys Res, Sect A 612:122–126

    Article  CAS  Google Scholar 

  23. Michel C, Emling H, Grosse E, Azgui F, Grein H, Wollersheim H, Gaardhøje J, Herskind B (1986) Monte Carlo simulation of complex germanium detector systems and Compton suppression spectrometers. Nucl Instrum Methods Phys Res, Sect A 251:119–133

    Article  Google Scholar 

  24. Molnár G, Révay Z, Belgya T (2002) Wide energy range efficiency calibration method for Ge detectors. Nucl Instrum Methods Phys Res, Sect A 489:140–159

    Article  Google Scholar 

  25. Hurtado S, Garcıa-Leon M, Garcıa-Tenorio R (2004) Monte Carlo simulation of the response of a germanium detector for low-level spectrometry measurements using GEANT4. Appl Radiat Isot 61:139–143

    Article  CAS  PubMed  Google Scholar 

  26. Gardner RP, Sood A (2004) A Monte Carlo simulation approach for generating NaI detector response functions (DRFs) that accounts for non-linearity and variable flat continua. Nucl Instrum Methods Phys Res, Sect B 213:87–99

    Article  CAS  Google Scholar 

  27. Herman M, Nichols AL (2002) Update of X- and γ-ray decay data standards for detector calibration and other applications. International Atomic Energy Agency (IAEA)

  28. Helmer R, Nica N, Hardy J, Iacob V (2004) Precise efficiency calibration of an HPGe detector up to 3.5 MeV, with measurements and Monte Carlo calculations. Appl Radiat Isot 60:173–177

    Article  CAS  PubMed  Google Scholar 

  29. Kis Z, Fazekas B, Östör J, Révay Z, Belgya T, Molnár G, Koltay L (1998) Comparison of efficiency functions for Ge gamma-ray detectors in a wide energy range. Nucl Instrum Methods Phys Res, Sect A 418:374–386

    Article  CAS  Google Scholar 

  30. Fazekas B, Östör J, Kiss Z, Simonits A, Molnár G (1998) Quality assurance features of “HYPERMET-PC.” J Radioanal Nucl Chem 233:101–103

    Article  CAS  Google Scholar 

  31. Fehrenbacher G, Meckbach R, Jacob P (1996) Unfolding the response of a Ge detector used for in-situ gamma-ray spectrometry. Nucl Instrum Methods Phys Res, Sect A 383:454–462

    Article  CAS  Google Scholar 

  32. Su PC, Min SG, Choi H (2003) Experimental and simulated efficiency of a HPGe detector in the energy range of 0.06–11MeV. Nucl Eng Technol 35:234–242

    Google Scholar 

  33. Zhang W, Gardner RP (2005) CEARPGA II: a Monte Carlo simulation code for prompt-gamma-ray neutron activation analysis. Nucl Sci Eng 151:361–373

    Article  CAS  Google Scholar 

  34. Ma Y, Yang X, Huo H, Li H, Wang S, Huang H, Chen H (2023) Measurement study of neutron field relative distribution in sample for PGNAA based on NT. Nucl Instr Methods Phys Res Section A: Accel, Spectr, Detect Associat Equip 1045:167451. https://doi.org/10.1016/j.nima.2022.167451

    Article  CAS  Google Scholar 

  35. Huo H, Li H, Wu Y, Zhu S, Liu B, Sun Y, Wang S, Cao C, Yin W, Tang B, Rogers J (2020) Development of cold neutron radiography facility (CNRF) based on China Mianyang Research Reactor (CMRR). Nucl Instr Methods Phys Res Sect A: Accel, Spectr, Detect Associat Equip 953:163063. https://doi.org/10.1016/j.nima.2019.163063

    Article  CAS  Google Scholar 

  36. Brown F, Kiedrowski B, Bull J (2010) MCNP5–1.60 release notes. Report No LA-UR-10e06235 Los Alamos, NM: Los Alamos National Laboratory

  37. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J (2020) SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods 17:261–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Helene O, Vanin VR, Helmer RG, Schönfeld E, Dersch R, Baglin CM, Browne E, Castro RM, Pascholati PR (2007) Update of X-ray and Gamma-ray decay data standards for detector calibration and other applications. International Atomic Energy Agency: Vienna 210

  39. Mughabghab S (1981) “Neutron resonance parameters and thermal cross section” Part A, Z= 1–60. Neutron Cross sections 1

  40. Mughabghab S (2003) Thermal neutron capture cross sections resonance integrals and g-factors

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12205271, U20B2011, 12075217 and 51978218) and Sichuan Science and Technology Program (Grant No. 2019ZDZX0010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Li, H., Yang, X. et al. Wide energy region efficiency calibration study of a prompt gamma activation analysis facility. J Radioanal Nucl Chem 332, 4009–4018 (2023). https://doi.org/10.1007/s10967-023-09097-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09097-8

Keywords

Navigation