Skip to main content
Log in

Measurements of 135Cs/137Cs in debris from the Trinity nuclear test

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

135Cs/137Cs measurements were performed on a set of debris samples from the first nuclear test, Trinity. Debris from several locations around ground zero of the event were purified and analyzed for 135Cs/137Cs by thermal ionization mass spectrometry (TIMS). The Cs-isotopic measurements presented here are the first high precision TIMS 135Cs/137Cs measurements of trinitite from variable locations and cooling histories relative to ground zero. Our measurements show a large fractionation from the predicted fission yields, all with a relative enrichment in 137Cs. 135Cs/137Cs ratios indicate that condensation times varied between different debris forms, however they are not consistent with an unfractionated decay to Cs from independent fission products. Variations in 135Cs/137Cs ratios are observed with relative distance from ground zero as well as 135Cs/137Cs heterogeneities between different trinitite lithologies within a single sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lee T et al (1993) 1st Detection of fallout Cs-135 and potential applications of Cs-137/Cs-135 ratios. Geochim Cosmochim Acta 57(14):3493–3497

    Article  CAS  Google Scholar 

  2. Singh B, Rodionov AA, Khazov YL (2008) Nuclear data sheets for A=135. Nucl Data Sheets 109(3):517–698

    Article  CAS  Google Scholar 

  3. Barker JA et al (1974) Interatomic potentials for krypton and xenon. J Chem Phys 61(8):3081–3089

    Article  CAS  Google Scholar 

  4. Strritzky E (1950) Thermal effects of atomic bomb explosions on soils at trinity and Eniwetok, in LA-1126. 1950, Los Alamos National Laboratory

  5. Day JMD et al (2017) Evaporative fractionation of zinc during the first nuclear detonation. Sci Adv 3(2):e1602668

    Article  PubMed  PubMed Central  Google Scholar 

  6. Freiling EC, Kay MA (1966) Radionuclide fractionation in air-burst debris. Nature 209(5020):236

    Article  CAS  PubMed  Google Scholar 

  7. Snyder DC et al (2012) Radioactive cesium isotope ratios as a tool for determining dispersal and re-dispersal mechanisms downwind from the Nevada Nuclear Security Site. J Environ Radioact 110:46–52

    Article  CAS  PubMed  Google Scholar 

  8. Khan FA (2020) Estimating the photo-fission yield of the Trinity Test. Sci Rep 10(1):4200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Selby HD et al (2021) A new yield assessment for the trinity nuclear test, 75 years later. Nucl Technol 207:S321–S325

    Article  Google Scholar 

  10. Zok D et al (2021) Determination of characteristic vs anomalous Cs-135/Cs-137 isotopic ratios in radioactively contaminated environmental samples. Environ Sci Technol 55(8):4984–4991

    Article  CAS  PubMed  Google Scholar 

  11. Eby GN et al (2015) Trinitite redux: mineralogy and petrology. Am Miner 100(2–3):427–441

    Article  Google Scholar 

  12. Ross CS (1948) Optical properties of glass from alamogordo. New-Mexico Am Mineral 33(5–6):360–362

    CAS  Google Scholar 

  13. Melosh HJ, Vickery AM (1991) Melt droplet formation in energetic impact events. Nature 350(6318):494–497

    Article  Google Scholar 

  14. Adams CE, Farlow NH, Schell WR (1960) The compositions, structures and origins of radioactive fall-out particles. Geochim Cosmochim Acta 18(1–2):42–000

    Article  CAS  Google Scholar 

  15. Belloni F et al (2011) Investigating incorporation and distribution of radionuclides in trinitite. J Environ Radioact 102(9):852–862

    Article  CAS  PubMed  Google Scholar 

  16. Bonamici CE et al (2017) A geochemical approach to constraining the formation of glassy fallout debris from nuclear tests. Contrib Mineral Petrol 172(1):1–23

    Article  CAS  Google Scholar 

  17. Cassata WS et al (2014) When the dust settles: stable xenon isotope constraints on the formation of nuclear fallout. J Environ Radioact 137:88–95

    Article  CAS  PubMed  Google Scholar 

  18. Lewis LA et al (2015) Spatially-resolved analyses of aerodynamic fallout from a uranium-fueled nuclear test. J Environ Radioact 148:183–195

    Article  CAS  PubMed  Google Scholar 

  19. Smit JV, Robb W, Jacobs JJ (1959) Cation exchange on ammonium molybdophosphate. 1. The alkali metals. J Inorg Nucl Chem 12(1–2):104–112

    Article  CAS  Google Scholar 

  20. Coetzee CJ, Rohwer EFCH (1970) Cation exchange studies on ammonium-12-molybdophosphate. J Inorg Nucl Chem 32(5):1711–2000

    Article  CAS  Google Scholar 

  21. Snow MS et al (2015) Method for ultra-trace cesium isotope ratio measurements from environmental samples using thermal ionization mass spectrometry. Int J Mass Spectrom 381:17–24

    Article  Google Scholar 

  22. Bu WT et al (2019) Ultra-trace determination of the Cs-135/Cs-137 isotopic ratio by thermal ionization mass spectrometry with application to Fukushima marine sediment samples. J Anal At Spectrom 34(2):301–309

    Article  CAS  Google Scholar 

  23. Zheng J et al (2016) Triple-quadrupole inductively coupled plasma-mass spectrometry with a high-efficiency sample introduction system for ultratrace determination of Cs-135 and Cs-137 in environmental samples at femtogram levels. Anal Chem 88(17):8772–8779

    Article  CAS  PubMed  Google Scholar 

  24. Dunne JA, Richards DA, Chen HW (2017) Procedures for precise measurements of Cs-135/Cs-137 atom ratios in environmental samples at extreme dynamic ranges and ultra-trace levels by thermal ionization mass spectrometry. Talanta 174:347–356

    Article  CAS  PubMed  Google Scholar 

  25. Russell BC, Croudace IW, Warwick PE (2015) Determination of Cs-135 and Cs-137 in environmental samples: a review. Anal Chim Acta 890:7–20

    Article  CAS  PubMed  Google Scholar 

  26. Bu WT et al (2016) Mass spectrometry for the determination of fission products Cs-135, Cs-137 and Sr-90: a review of methodology and applications. Spectrochimica Acta Part B-Atomic Spectr 119:65–75

    Article  CAS  Google Scholar 

  27. Reinhard A et al (2021) Isotopic analysis of sub-nanogram neodymium loads using new ATONA (TM) amplifiers. Rapid Commun Mass Spectr. https://doi.org/10.1002/rcm.9032

    Article  Google Scholar 

  28. Szymanowski D, Schoene B (2020) U-Pb ID-TIMS geochronology using ATONA amplifiers. J Anal At Spectrom 35(6):1207–1216

    Article  CAS  Google Scholar 

  29. Agency IAE (2009) Reference sheet for certified reference material IAEA-330 radionuclides in spinach. Internation atomic energy agency: https://nucleus.iaea.org/sites/ReferenceMaterials/Shared%20Documents/ReferenceMaterials/Radionuclides/IAEA-330/rs_iaea_330.pdf. p 1–4

  30. Wilson WB, STC, England TR, Hayes AC (2008) A manual for CINDER’90 Version 07.04 codes and data. Los Alamos national laboratory

  31. Werner CJ (2017) MCNP Users Manual-Code Version 6.2. 2017

  32. Wilson WB et al (1997) CINDER’90 code for transmutation calculations. Int Conf Nucl Data Sci Technol 59:1454–1457

    CAS  Google Scholar 

  33. Parekh PP et al (2006) Radioactivity in Trinitite six decades later. J Environ Radioact 85(1):103–120

    Article  CAS  PubMed  Google Scholar 

  34. Bellucci JJ et al (2014) A detailed geochemical investigation of post-nuclear detonation trinitite glass at high spatial resolution: delineating anthropogenic vs natural components. Chem Geol 365:69–86

    Article  CAS  Google Scholar 

  35. Fuge R (1990) The role of volatility in the distribution of iodine in the secondary environment. Appl Geochem 5(3):357–360

    Article  Google Scholar 

  36. Hu QH, Weng JQ, Wang JS (2010) Sources of anthropogenic radionuclides in the environment: a review. J Environ Radioact 101(6):426–437

    Article  CAS  PubMed  Google Scholar 

  37. Fujii T et al (2004) Volatility of tellurium and various fission products in heated nitric acid solutions. J Radioanal Nucl Chem 262(3):551–554

    Article  CAS  Google Scholar 

  38. Mcdonough WF, Sun SS (1995) The composition of the earth. Chem Geol 120(3–4):223–253

    Article  CAS  Google Scholar 

  39. Mills NM, Agee CB, Draper DS (2007) Metal-silicate partitioning of cesium: Implications for core formation. Geochim Cosmochim Acta 71(16):4066–4081

    Article  CAS  Google Scholar 

  40. Jochum KP, Hofmann AW, Seufert HM (1993) Tin in mantle-derived rocks - constraints on earth evolution. Geochim Cosmochim Acta 57(15):3585–3595

    Article  CAS  Google Scholar 

  41. Cook CS et al (1960) Fractionation of nuclear weapon debris. Nature 187(4743):1100–1101

    Article  Google Scholar 

  42. Edvarson K, Low K, Sisefsky J (1959) Fractionation phenomena in nuclear weapons debris. Nature 184(4701):1771–1774

    Article  CAS  Google Scholar 

  43. Hanson SK et al (2016) Measurements of extinct fission products in nuclear bomb debris: determination of the yield of the Trinity nuclear test 70 y later. Proc Natl Acad Sci USA 113(29):8104–8108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Delmore JE et al (2011) Cesium isotope ratios as indicators of nuclear power plant operations. J Environ Radioact 102(11):1008–1011

    Article  CAS  PubMed  Google Scholar 

  45. Kim JS et al (2015) Analysis of high burnup pressurized water reactor fuel using uranium, plutonium, neodymium, and cesium isotope correlations with burnup. Nucl Eng Technol 47(7):924–933

    Article  Google Scholar 

  46. Snow MS, Snyder DC, Delmore JE (2016) Fukushima Daiichi reactor source term attribution using cesium isotope ratios from contaminated environmental samples. Rapid Commun Mass Spectrom 30(4):523–532

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was graciously supported by the Laboratory Directed Research and Development program of Los Alamos National Laboratory under project 20210215DR. We would like to thank Hakim Boukhalfa and Doug Ware for their assistance in acquiring and photographing debris samples. We would also like to thank Reg Rocha for his guidance concerning data interpretation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Boggs.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5570 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boggs, M.A., Reinhard, A.A., Inglis, J. et al. Measurements of 135Cs/137Cs in debris from the Trinity nuclear test. J Radioanal Nucl Chem 332, 4157–4165 (2023). https://doi.org/10.1007/s10967-023-09096-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09096-9

Keywords

Navigation