Skip to main content
Log in

Rapid analysis of trinitite with nuclear forensic applications for post-detonation material analyses

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Analysis of post-nuclear detonation materials provides information on the type of device and its origin. Compositional analysis of trinitite glass, fused silicate material produced from the above ground plasma during the detonation of the Trinity nuclear bomb, reveals gross scale chemical and isotopic heterogeneities indicative of limited convective re-homogenization during accumulation into a melt pool at ground zero. Regions rich in weapons grade Pu have also been identified on the surface of the trinitite sample. The absolute and relative abundances of the lanthanoids in the glass are comparable to that of average upper crust composition, whereas the isotopic abundances of key lanthanoids are distinctly non-normal. The trinitite glass has a non-normal Nd isotope composition, with deviations of −1.75 ± 0.60 ε (differences in parts in 104) in 142Nd/144Nd, +2.24 ± 0.75 ε in 145Nd/144Nd, and +1.01 ± 0.38 ε in 148Nd/144Nd (all errors cited at 2σ) relative to reference materials: BHVO-2 and Nd-Ames metal. Greater isotopic deviations are found in Gd, with enrichments of +4 ± 1 ε in 155Gd/160Gd, +4.19 ± 0.75 ε in 156Gd/160Gd, and +3.48 ± 0.52 ε in 158Gd/160Gd compared to BHVO-2. The isotopic deviations are consistent with a 239Pu based fission device with additional 235U fission contribution and a thermal neutron fluence between 1.4 and 0.97 × 1015 neutrons/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Eby N, Hermes R, Charnley N, Smoliga JA (2010) Trinitite—the atomic rock. Geol Today 26(5):180–185

    Article  Google Scholar 

  2. Belloni F, Himbert J, Marzocchi O, Romanello V (2011) Investigating incorporation and distribution of radionuclides in trinitite. J Environ Radioact 102(9):852–862

    Article  CAS  Google Scholar 

  3. Fahey AJ, Zeissler CJ, Newbury DE, Davis J, Lindstrom RM (2010) Post-detonation nuclear debris for attribution. Proc Natl Acad of Sci USA 107(47):20207–20212

    Article  CAS  Google Scholar 

  4. Bellucci J, Simonetti A (2012) Nuclear forensics: searching for nuclear device debris in trinitite-hosted inclusions. J Radioanl Nucl Chem 293(1):313–319

    Article  CAS  Google Scholar 

  5. Bellucci JJ, Simonetti A, Wallace C, Koeman EC, Burns PC (2013) Isotopic fingerprinting of the world’s first nuclear device using post-detonation materials. Anal Chem 85(8):4195–4198

    Article  CAS  Google Scholar 

  6. Bellucci JJ, Simonetti A, Wallace C, Koeman EC, Burns PC (2013) Lead isotopic composition of trinitite melt glass: evidence for the presence of Canadian industrial lead in the first atomic weapon test. Anal Chem 85(15):7588–7593

    Article  CAS  Google Scholar 

  7. Hermes RE, Strickfaden WB (2005) A new look at trinitite. Nucl Weapons J 2:2–7

    Google Scholar 

  8. Jackson S (2008) LAMTRACE data reduction software for LA-ICP-MS. Laser ablation ICP-MS earth sci curr pract and outst issues. Miner Assoc of Can, Short Course Ser 40:305–307

    Google Scholar 

  9. Chang T-L, Qian Q-Y, Zhao M-T, Wang J, Lang Q-Y (1995) The absolute isotopic composition of cerium. Int J Mass Spectrom Ion Process 142(1–2):125–131

    Article  CAS  Google Scholar 

  10. Rudnick RL, Gao S (2003) Composition of the continental crust. Treatise Geochem 3:1–64

    Article  Google Scholar 

  11. Barth MG, McDonough WF, Rudnick RL (2000) Tracking the budget of Nb and Ta in the continental crust. Chem Geol 165(3–4):197–213

    Article  CAS  Google Scholar 

  12. Moody K, Hutcheon I, Grant P (2005) Nuclear forensic analysis. CRC Press, Boca Raton, p 485

    Book  Google Scholar 

  13. Ross CS (1948) Optical properties of glass from Alamogordo, New Mexico. Am Mineral 33:360–362

    CAS  Google Scholar 

  14. Chadwick MB, Herman M, Obložinský P, Dunn ME, Danon Y, Kahler AC, Smith DL, Pritychenko B, Arbanas G, Arcilla R, Brewer R, Brown DA, Capote R, Carlson AD, Cho YS, Derrien H, Guber K, Hale GM, Hoblit S, Holloway S, Johnson TD, Kawano T, Kiedrowski BC, Kim H, Kunieda S, Larson NM, Leal L, Lestone JP, Little RC, McCutchan EA, MacFarlane RE, MacInnes M, Mattoon CM, McKnight RD, Mughabghab SF, Nobre GPA, Palmiotti G, Palumbo A, Pigni MT, Pronyaev VG, Sayer RO, Sonzogni AA, Summers NC, Talou P, Thompson IJ, Trkov A, Vogt RL, van der Marck SC, Wallner A, White MC, Wiarda D, Young PG (2011) ENDF/B-VII.1 Nuclear data for science and technology: cross sections, covariances, fission product yields and decay data. Nucl Data Sheets 112(12):2887–2996

    Article  CAS  Google Scholar 

  15. Bainbridge KT (1976) Trinity. (No. LA-6300-H). Los Alamos Scientific Lab., Los Alamos

  16. Eugster O, Tera F, Burnett DS, Wasserburg G (1970) Isotopic composition of gadolinium and neutron-capture effects in some meteorites. J Geophys Res 75(14):2753–2768

    Article  CAS  Google Scholar 

  17. Parekh PP, Semkow TM, Torres MA, Haines DK, Cooper JM, Rosenberg PM, Kitto ME (2006) Raioactivity in trinitite six decades later. J Environ Radioact 85:103–120

    Article  CAS  Google Scholar 

  18. Bellucci JJ, Wallace C, Koeman EC, Simonetti A, Burns PC, Kieser J, Port E, Walczak T (2013) Distribution and behavior of some radionuclides associated with the trinity nuclear test. J Radioanal Nucl Chem 295(3):2049–205719

    Article  CAS  Google Scholar 

  19. Semkow TM, Parekh PP, Haines DK (2006) Modeling the effects of the trinity test. Appl Model Comput Nucl Sci 105:142–159

    Article  Google Scholar 

Download references

Acknowledgment

We would like to thank the Smithsonian National Museum of Natural History for the trinitite sample, A. Fahey for discussion over trinitite properties and sample analysis techniques, and Savannah River National Laboratory for the use of their mass spectrometer. NS adds a special thanks to Dr. Mignerey for her assistance in understanding neutron and fission interactions. Funding was provided by the Plasma Lab at the University of Maryland, the Department of Geology, and the University of Maryland.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nicholas Sharp or William F. McDonough.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 868 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharp, N., McDonough, W.F., Ticknor, B.W. et al. Rapid analysis of trinitite with nuclear forensic applications for post-detonation material analyses. J Radioanal Nucl Chem 302, 57–67 (2014). https://doi.org/10.1007/s10967-014-3285-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3285-9

Keywords

Navigation