Skip to main content
Log in

γ-radiation-induced damage on normal hepatocytes and its protection by ethyl cinnamate

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This study aimed to investigate the efficacy of ethyl cinnamate (EC) (75 μg/ml) in ameliorating the effects of γ-radiation (2, 5, and 8 Gy) on normal liver BRL-3A cells at 1 and 24 h post-irradiation. γ-radiation-induced persistent damage to normal hepatocytes is partly mediated by reactive oxygen species (ROS)-regulated early apoptosis and prolonged inhibition of survival factors. EC treatment increased superoxide dismutase (SOD) activity, decreased ROS yield and lipid peroxidation (LPO), activated the PI3-AKT pathway and p-Bcl-2, and reduced cleaved caspase -3,  - 9, and Bax. This study highlights for the first time the potential of ethyl cinnamate as an efficient radioprotector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kim J, Jung Y (2017) Radiation-induced liver disease: current understanding and future perspectives. Exp Mol Med 49(7):e359

    PubMed  PubMed Central  Google Scholar 

  2. Toesca DAS, Ibragimov B, Koong AJ, Xing L, Koong AC, Chang DT (2018) Strategies for prediction and mitigation of radiation-induced liver toxicity. J Radiat Res 59:40–49

    Google Scholar 

  3. Raza A, Sood GK (2014) Hepatocellular carcinoma review: current treatment, and evidence-based medicine. World J Gastroenterol 20(15):4115–4127

    PubMed  PubMed Central  Google Scholar 

  4. Zhang T, Merle P, Wang H, Zhao H, Kudo M (2021) Combination therapy for advanced hepatocellular carcinoma: do we see the light at the end of the tunnel? Hepatobiliary Surg Nutr 10(2):180–192

    PubMed  PubMed Central  Google Scholar 

  5. Ohri N, Dawson LA, Krishnan S, Seong J, Cheng JC, Sarin SK, Kinkhabwala M, Ahmed MM, Vikram B, Coleman CN, Guha C (2016) Radiotherapy for hepatocellular carcinoma: new indications and directions for future study. J Natl Cancer Inst 108(9):djw133

    PubMed  PubMed Central  Google Scholar 

  6. Zhu W, Zhang X, Yu M, Lin B, Yu C (2021) Radiation-induced liver injury and hepatocyte senescence. Cell Death Discov 7:244

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu R, Bian Y, Liu L, Liu L, Liu X, Ma S (2022) Molecular pathways associated with oxidative stress and their potential applications in radiotherapy (Review). Int J Mol Med 49(5):65

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Blanco Y, de Diego-Castilla G, Viúdez-Moreiras D, Cavalcante-Silva E, Rodríguez-Manfredi JA, Davila AF, McKay CP, Parro V (2018) Effects of gamma and electron radiation on the structural integrity of organic molecules and macromolecular biomarkers measured by microarray immunoassays and their astrobiological implications. Astrobiology 18(12):1497–1516

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Na K, Cho Y, Choi D-H, Park M-J, Yang J-H, Chung S (2021) Gamma irradiation exposure for collapsed cell junctions and reduced angiogenesis of 3-D in vitro blood vessels. Sci Rep 11:18230

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Maia GA, de Oliveira RC, Medina JM, da Silveira AB, Mignaco JA, Atella GC, Cortes VF, Barbosa LA, de Lima SH (2014) The effect of gamma radiation on the lipid profile of irradiated red blood cells. Ann Hematol 93:753–760

    CAS  PubMed  Google Scholar 

  11. Plichta K, Camden N, Furqan M, AbuHejleh T, Clamon GH, Zhang J, Flynn RT, Bhatia SK, Smith MC, Buatti JM, Allen BG (2017) SBRT to adrenal metastases provides high local control with minimal toxicity. Adv Radiat Oncol 2(4):581–587

    PubMed  PubMed Central  Google Scholar 

  12. Koay EJ, Owen D, Das P (2018) Radiation-induced liver disease and modern radiotherapy. Semin Radiat Oncol 28(4):321–331

    PubMed  PubMed Central  Google Scholar 

  13. Benson R, Madan R, Kilambi R, Chander S (2016) Radiation induced liver disease: a clinical update. J Egypt Natl Cancer Inst 28(1):7–11

    CAS  Google Scholar 

  14. Abdollahi H, Shiri I, Atashzar M, Sarebani M, Moloudi K, Samadian H (2015) Radiation protection and secondary cancer prevention using biological radioprotectors in radiotherapy. Int J Cancer Ther Oncol 3(3):335

    Google Scholar 

  15. Nemoto K, Horiuchi K, Miyamoto T (1995) Deoxyspergualin is a new radioprotector in mice. Radiat Res 141(2):223–226

    CAS  PubMed  Google Scholar 

  16. Kamran MZ, Ranjan A, Kaur N, Sur S, Tandon V (2016) Radioprotective agents: strategies and translational advances. Med Res Rev 36:461–493

    PubMed  Google Scholar 

  17. Weiss JF, Kumar KS, Walden TL, Neta R, Landauer MR, Clark EP (1990) Advances in radioprotection through the use of combined agent regimens. Int J Rad Biol 57(4):709–722

    CAS  PubMed  Google Scholar 

  18. Checker R, Patwardhan RS, Jayakumar S, Maurya DK, Bandekar M, Sharma D, Sandur SK (2021) Chemical and biological basis for development of novel radioprotective drugs for cancer therapy. Free Radic Res 55(8):828–858

    CAS  Google Scholar 

  19. Kamran MZ, Ranjan A, Kaur N, Sur S, Tandon V (2016) Radioprotective agents: strategies and translational advances. Med Res Rev 36(3):461–493

    PubMed  Google Scholar 

  20. Hosseinimehr SJ (2007) Trends in the development of radioprotective agents. Drug Discov Today 12(19–20):794–805

    CAS  PubMed  Google Scholar 

  21. da Costa Araldi IC, Bordin FPR, Cadoná FC, Barbisan F, Azzolin VF, Teixeira CF, Baumhardt T, da Cruz IBM, Duarte MMMF, Bauermann LF (2018) The in vitro radiosensitizer potential of resveratrol on MCF-7 breast cancer cells. Chem-Biol Interact 282:85–92

    PubMed  Google Scholar 

  22. Tan Y, Wei X, Zhang W, Wang X, Wang K, Du B, Xiao J (2017) Resveratrol enhances the radiosensitivity of nasopharyngeal carcinoma cells by downregulating E2F1. Oncol Rep 37(3):1833–1841

    CAS  PubMed  Google Scholar 

  23. Baek SH, Ko JH, Lee H, Jung J, Kong M, Lee JW, Lee J, Chinnathambi A, Zayed ME, Alharbi SA et al (2016) Resveratrol inhibits STAT3 signalling pathway through the induction of SOCS-1: Role in apoptosis induction and radiosensitisation in head and neck tumor cells. Phytomedicine 23(5):566–577

    CAS  PubMed  Google Scholar 

  24. Minafra L, Porcino N, Bravatà V, Gaglio D, Bonanomi M, Amore E, Cammarata FP, Russo G, Militello C, Savoca G et al (2019) Radiosensitizing effect of curcumin-loaded lipid nanoparticles in breast cancer cells. Sci Rep 9:11134

    PubMed  PubMed Central  Google Scholar 

  25. Schwarz K, Dobiasch S, Nguyen L, Schilling D, Combs SE (2020) Modification of radiosensitivity by Curcumin in human pancreatic cancer cell lines. Sci Rep 10:3815

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Karthikeyan S, Kanimozhi G, Prasad NR, Mahalakshmi R (2011) Radiosensitizing effect of ferulic acid on human cervical carcinoma cells in vitro. Toxicol In Vitro 25(7):1366–1375

    CAS  PubMed  Google Scholar 

  27. Singh Tuli H, Kumar A, Ramniwas S, Coudhary R, Aggarwal D, Kumar M, Sharma U, Chaturvedi Parashar N, Haque S, Sak K (2022) Ferulic acid: a natural phenol that inhibits neoplastic events through modulation of oncogenic signaling. Molecules 27(21):7653

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sebastia N, Montoro A, Hervas D, Pantelias G, Hatzi VI, Soriano JM, Villaescusa JI, Terzoudi GI (2014) Curcumin and trans-resveratrol exert cell cycle-dependent radioprotective or radiosensitising effects as elucidated by the PCC and G2-assay. Mutat Res 766–767:49–55

    PubMed  Google Scholar 

  29. Jiao Y, Ouyang HL, Jiang YJ, Kong XZ, He W, Liu WX, Yang B, Xu FL (2015) Toxic effects of ethyl cinnamate on the photosynthesis and physiological characteristics of Chlorella vulgaris based on chlorophyll fluorescence and flow cytometry analysis. Sci World J 2015:107823

    Google Scholar 

  30. Gao LL, Guo PY, Su GM, Wei YF (2013) Effects of allelochemicals ethyl cinnamate on the growth and physiological characteristics of Chlorella pyrenoidosa. Huan Jing Ke Xue 34(1):156–162

    CAS  PubMed  Google Scholar 

  31. Zhang B, Lv C, Li W, Cui Z, Chen D, Cao F, Miao F, Zhou L (2015) Ethyl cinnamate derivatives as promising high-efficient acaricides against Psoroptes cuniculi: synthesis, bioactivity and structure-activity relationship. Chem Pharm Bull 63(4):255–262

    CAS  Google Scholar 

  32. Dubey NK, Tiwari TN, Mandin D, Andriamboavonjy H, Chaumont JP (2000) Antifungal properties of Ocimum gratissimum essential oil (ethyl cinnamate chemotype). Fitoterapia 71(5):567–569

    CAS  PubMed  Google Scholar 

  33. Mukherjee S, Dutta A, Chakraborty A (2022) The cross-talk between Bax, Bcl2, caspases, and DNA damage in bystander HepG2 cells is regulated by γ-radiation dose and time of conditioned media transfer. Apoptosis 27(3–4):184–205

    CAS  PubMed  Google Scholar 

  34. Ma ZC, Hong Q, Wang YG, Tan HL, Xiao CR, Liang QD, Wang DG, Gao Y (2011) Ferulic acid protects lymphocytes from radiation-predisposed oxidative stress through extracellular regulated kinase. Int J Radiat Biol 87(2):130–140

    CAS  PubMed  Google Scholar 

  35. Mishra K, Ojha H, Kallepalli S, Alok A, Chaudhury NK (2014) Protective effect of ferulic acid on ionising radiation induced damage in bovine serum albumin. Int J Rad Res 12(2):113–121

    Google Scholar 

  36. Maurya DK, Devasagayam TPA (2013) Ferulic acid inhibits gamma radiation-induced DNA strand breaks and enhances the survival of mice. Cancer Biother Radiopharm 28(1):51–57

    CAS  PubMed  Google Scholar 

  37. Shin HA, Shin YS, Kang SU, Kim JH, Oh YT, Park KH, Lee BH, Kim CH (2014) Radioprotective effect of epicatechin in cultured human fibroblasts and zebrafish. J Rad Res 55(1):32–40

    CAS  Google Scholar 

  38. Das DK, Sinha M, Khan A, Das K, Manna K, Dey S (2013) Radiation protection by major tea polyphenol. Epicatechin Int J Hum Genet 13(1):59–64

    CAS  Google Scholar 

  39. Sinha M, Das DK, Manna K, Datta S, Ray T, Sil AK, Dey S (2012) Epicatechin ameliorates ionizing radiation-induced oxidative stress in mouse liver. Free Rad Res 46(7):842–849

    CAS  Google Scholar 

  40. Morgan WF (2003) Is there a common mechanism underlying genomic instability, bystander effects and other nontargeted effects of exposure to ionizing radiation? Oncogene 22(45):7094–7099

    CAS  PubMed  Google Scholar 

  41. Robbins ME, Zhao W (2004) Chronic oxidative stress and radiation-induced late normal tissue injury: a review. Int J Radiat Biol 80(4):251–259

    CAS  PubMed  Google Scholar 

  42. Kurz DJ, Decary S, Hong Y, Trivier E, Akhmedov A, Erusalimsky JD (2004) Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells. J Cell Sci 117(Pt 11):2417–2426

    CAS  PubMed  Google Scholar 

  43. Dong S, Lyu X, Yuan S, Wang S, Li W, Chen Z, Yu H, Li F, Jiang Q (2020) Oxidative stress: a critical hint in ionizing radiation induced pyroptosis. Radiat Med Prot 1(4):179–185

    Google Scholar 

  44. Datta K, Suman S, Kallakury BV, Fornace AJ Jr (2012) Exposure to heavy ion radiation induces persistent oxidative stress in mouse intestine. PLoS ONE 7(8):e42224

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Shojaie L, Iorga A, Dara L (2020) Cell death in liver diseases: a review. Int J Mol Sci 21(24):9682

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Fukuda K, Uehara Y, Nakata E, Inoue M, Shimazu K, Yoshida T, Kanda H, Nanjo H, Hosoi Y, Yamakoshi H et al (2016) A diarylpentanoid curcumin analog exhibits improved radioprotective potential in the intestinal mucosa. Int J Rad Biol 92(7):388–394

    CAS  PubMed  Google Scholar 

  47. Kumar S, Tiku AB (2016) Biochemical and molecular mechanisms of Radioprotective effects of Naringenin, a phytochemical from citrus fruits. Agric Food Chem 64(8):1676–1685

    CAS  Google Scholar 

  48. Das U, Biswas S, Sengupta A, Manna K, Chakraborty A, Dey S (2016) Ferulic acid (FA) abrogates ionising radiation-induced oxidative damage in murine spleen. Int J Rad Biol 92(12):806–818

    CAS  PubMed  Google Scholar 

  49. Sam F, Kerstetter DL, Pimental DR, Mulukutla S, Tabaee A, Bristow MR, Colucci WS, Sawyer DB (2005) Increased reactive oxygen species production and functional alterations in antioxidant enzymes in human failing myocardium. J Card Fail 11(6):473–480

    CAS  PubMed  Google Scholar 

  50. Yano S, Yano N (2002) Regulation of catalase enzyme activity by cell signaling molecules. Mol Cell Biochem 240(1–2):119–130

    CAS  PubMed  Google Scholar 

  51. Kim GJ, Fiskum GM, Morgan WF (2006) A role for mitochondrial dysfunction in perpetuating radiation-induced genomic instability. Cancer Res 66(21):10377–10383

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ekaterina P, Ekaterina L, Eugenia D, Nadezhda Z, Anna K, Mikhail S, Alexey M (2016) Geroprotective Radioprotective activity of quercetin, (-)-Epicatechin, and ibuprofen in drosophila melanogaster. Front Pharmacol 7:505

    Google Scholar 

  53. Sruthi P, Naidu MM (2021) Radioprotection by curcumin: a mini review. J Spices Aromat Crops 30(1):24–33

    Google Scholar 

  54. Son Y, Kim S, Chung HT, Pae HO (2013) Reactive oxygen species in the activation of MAP kinases. Methods Enzymol 528:27–48

    CAS  PubMed  Google Scholar 

  55. Koundouros N, Poulogiannis G (2018) Phosphoinositide 3-kinase/Akt signaling and redox metabolism in cancer. Front Oncol 8:160

    PubMed  PubMed Central  Google Scholar 

  56. Xie W, Huang W, Cai S, Chen H, Fu W, Chen Z, Liu Y (2021) NF κB/IκBα signaling pathways are essential for resistance to heat stress induced ROS production in pulmonary microvascular endothelial cells. Mol Med Rep 24(5):814

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hickling KC, Hitchcock JM, Oreffo V, Mally A, Hammond TG, Evans JG, Chipman JK (2010) Evidence of oxidative stress and associated DNA damage, increased proliferative drive, and altered gene expression in rat liver produced by the cholangiocarcinogenic agent furan. Toxicol Pathol 38(2):230–243

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author AD thankfully acknowledges the University Grant Commission (UGC), Government of India, for funding the project (Sanction no. F.15-6 Dec 2014/2015 NET). The author SM would like to thank the Indian Council of Medical Research (ICMR) for providing a research grant (No. 3/1/3/JRF-2016/HRD). The authors thank the UGC-DAE Consortium for Scientific Research, Kolkata Centre, India, for providing all the facilities for conducting this research.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SM, AD, AC; Methodology: SM, AD; Formal analysis and investigation: SM, AD; Writing—original draft preparation: SM, AD; Writing—review and editing: SM, AD, AC; Funding acquisition: SM, AD; Supervision: AC All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Anindita Chakraborty.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, S., Dutta, A. & Chakraborty, A. γ-radiation-induced damage on normal hepatocytes and its protection by ethyl cinnamate. J Radioanal Nucl Chem 333, 1453–1465 (2024). https://doi.org/10.1007/s10967-023-09067-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09067-0

Keywords

Navigation