Skip to main content
Log in

Removal of uranium from steel surface by polyvinyl alcohol foaming gel

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this work, a foam gel material based on polyvinyl alcohol were successfully prepared to remove uranium contamination on the surface of stainless steel. The material was tested through infrared spectroscopy and thermogravimetric analysis. The decontamination process of the foam gel on stainless steel surface was analyzed by SEM/EDS and XPS. The results show that the foam gel has good stripping properties, and its decontamination factor for removal of radioactive uranium on stainless steel surfaces could reach 90.9, which seems better than the methods of water washing and wiping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig.15

Similar content being viewed by others

References

  1. Handley-Sidhu S, Worsfold PJ, Livens FR et al (2009) Biogeochemical controls on the corrosion of depleted uranium alloy in subsurface soils. Environ Sci Technol. https://doi.org/10.1021/es901276e

    Article  PubMed  Google Scholar 

  2. Ran Y, Wang S, Zhao Y et al (2020) A review of biological effects and treatments of inhaled depleted uranium aerosol. J Environ Radioact. https://doi.org/10.1016/j.jenvrad.2020.106357

    Article  PubMed  Google Scholar 

  3. Akash S, Sivaprakash B, Raja VCV et al (2022) Remediation techniques for uranium removal from polluted environment–review on methods, mechanism and toxicology. Environ Pollut. https://doi.org/10.1016/j.envpol.2022.119068

    Article  PubMed  Google Scholar 

  4. Kaminski MD, Oster C, Kivenas N et al (2021) Penetration of fission product ions into complex solids and the effect of ionic wash methods. Environ Sci Pollut Res 28:10114–10124. https://doi.org/10.1007/s11356-020-11392-w

    Article  CAS  Google Scholar 

  5. Real J, Persin F, Camarasa-Claret C (2002) Mechanisms of desorption of Cs-134 and Sr-85 aerosols deposited on urban surfaces. J Environ Radioact 62:1–15. https://doi.org/10.1016/S0265-931X(01)00136-9

    Article  CAS  PubMed  Google Scholar 

  6. Rao TV, Vook RW, Meyer W (1987) Characterization of 316 stainless steel surfaces used in BWR recirculation piping. Nucl Eng Des 101:167–174. https://doi.org/10.1016/0029-5493(87)90031-8

    Article  CAS  Google Scholar 

  7. Zhang H, Xi H, Li Z et al (2021) The stability and decontamination of surface radioactive contamination of biomass-based antifreeze foam. Coll Surfaces A Physicochem Eng Asp. https://doi.org/10.1016/j.colsurfa.2021.126774

    Article  Google Scholar 

  8. Lemesre L, Frances F, Grandjean A, Gossard A (2019) Hybrid colloidal suspensions tailored as gels to remove radioactive bitumen stains. J Environ Manage 232:660–665. https://doi.org/10.1016/j.jenvman.2018.11.125

    Article  CAS  PubMed  Google Scholar 

  9. Zhong L, Lei J, Deng J et al (2021) Existing and potential decontamination methods for radioactively contaminated metals: a review. Prog Nucl Energy 139:103854. https://doi.org/10.1016/j.pnucene.2021.103854

    Article  CAS  Google Scholar 

  10. Yoon I-H, Kim SE, Choi M et al (2020) Highly enhanced foams for stability and decontamination efficiency with a fluorosurfactant silica nanoparticles and Ce(IV) in radiological application. Environ Technol Innov 18:100744. https://doi.org/10.1016/j.eti.2020.100744

    Article  Google Scholar 

  11. Viltres H, López YC, Leyva C et al (2021) Polyamidoamine dendrimer-based materials for environmental applications: a review. J Mol Liq 334:116017. https://doi.org/10.1016/j.molliq.2021.116017

    Article  CAS  Google Scholar 

  12. Miller MJ, Fogler S (1995) A mechanistic investigation of waterflood diversion using foamed gels. SPE Prod Facil 10:62–69. https://doi.org/10.2118/24662-PA

    Article  CAS  Google Scholar 

  13. Friedmann F, Hughes TL, Smith ME et al (1999) Development and testing of a foam-gel technology to improve conformance of the rangely CO2 flood. SPE Reservoir Eval Eng 2:4–13. https://doi.org/10.2118/54429-PA

    Article  CAS  Google Scholar 

  14. Miller MJ, Fogler HS (1995) Prediction of fluid distribution in porous-media treated with foamed geL. Chem Eng Sci 50:3261–3274. https://doi.org/10.1016/0009-2509(95)00156-Y

    Article  CAS  Google Scholar 

  15. Romero-Zeron L, Kantzas A (2007) The effect of wettability and pore geometry on foamed-gel-blockage performance. SPE Reservoir Eval Eng 10:150–163. https://doi.org/10.2118/89388-PA

    Article  CAS  Google Scholar 

  16. Ren W, Guo Q, Wang Z (2016) Application of foam-gel technology for suppressing coal spontaneous combustion in coal mines. Nat Hazards 84:1207–1218. https://doi.org/10.1007/s11069-016-2499-2

    Article  Google Scholar 

  17. Richard-Denis A, Thompson C, Mac-Thiong J-M (2017) Effectiveness of a multi-layer foam dressing in preventing sacral pressure ulcers for the early acute care of patients with a traumatic spinal cord injury: comparison with the use of a gel mattress. Int Wound J 14:874–881. https://doi.org/10.1111/iwj.12710

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wu ZY, Hill RG, Yue S et al (2011) Melt-derived bioactive glass scaffolds produced by a gel-cast foaming technique. Acta Biomater 7:1807–1816. https://doi.org/10.1016/j.actbio.2010.11.041

    Article  CAS  PubMed  Google Scholar 

  19. Kakar A, Newby EE, Ghosh S et al (2011) A randomised clinical trial to assess maintenance of gingival health by a novel gel to foam dentifrice containing 0.1%w/w o-cymen-5-ol, 0.6%w/w zinc chloride. Int Dent J 613:21–27. https://doi.org/10.1111/j.1875-595X.2011.00045.x

    Article  Google Scholar 

  20. Zhang K, Wang S, He Z et al (2020) Study on acrylate peelable nuclear detergent for film formation at low temperature. Appl Radiat Isot. https://doi.org/10.1016/j.apradiso.2020.109187

    Article  PubMed  Google Scholar 

  21. Deleurence R, Saison T, Lequeux F, Monteux C (2015) Time scales for drainage and imbibition in gellified foams: application to decontamination processes. Soft Matter 11:7032–7037. https://doi.org/10.1039/c5sm01158b

    Article  CAS  PubMed  Google Scholar 

  22. Ben Djemaa I, Auguste S, Drenckhan-Andreatta W, Andrieux S (2021) Hydrogel foams from liquid foam templates: properties and optimisation. Adv Coll Interface Sci 294:102478. https://doi.org/10.1016/j.cis.2021.102478

    Article  CAS  Google Scholar 

  23. Choi D, Khan MH, Jung J (2019) Crosslinking of PVA/alginate carriers by glutaraldehyde with improved mechanical strength and enhanced inhibition of deammonification sludge. Int Biodeterior Biodegrad 145:104788. https://doi.org/10.1016/j.ibiod.2019.104788

    Article  CAS  Google Scholar 

  24. Mansur HS, Sadahira CM, Souza AN, Mansur AAP (2008) FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater Sci Eng, C 28:539–548. https://doi.org/10.1016/j.msec.2007.10.088

    Article  CAS  Google Scholar 

  25. Wang H, Wei X, Du Y, Wang D (2019) Effect of water-soluble polymers on the performance of dust-suppression foams: wettability, surface viscosity and stability. Coll Surf A Physicochem Eng Asp 568:92–98. https://doi.org/10.1016/j.colsurfa.2019.01.062

    Article  CAS  Google Scholar 

  26. Yanagisawa N, Tani M, Kurita R (2021) Dynamics and mechanism of liquid film collapse in a foam. Soft Matter 17:1738–1745. https://doi.org/10.1039/D0SM02153A

    Article  CAS  PubMed  Google Scholar 

  27. Shi Q, Qin B, Xu Y et al (2022) Experimental investigation of the drainage characteristic and stability mechanism of gel-stabilized foam used to extinguish coal fire. Fuel 313:122685. https://doi.org/10.1016/j.fuel.2021.122685

    Article  CAS  Google Scholar 

  28. Liao H, Liu Y, Lin S (2020) Exploitation of acetalization process of poly(vinyl alcohol) for the formation of crosslinked poly(vinyl formal) foams. Polym Eng Sci 60:2023–2033. https://doi.org/10.1002/pen.25449

    Article  CAS  Google Scholar 

  29. Li Y, Song Y, Li J et al (2018) A scalable ultrasonic-assisted and foaming combination method preparation polyvinyl alcohol/phytic acid polymer sponge with thermal stability and conductive capability. Ultrason Sonochem 42:18–25. https://doi.org/10.1016/j.ultsonch.2017.11.014

    Article  CAS  PubMed  Google Scholar 

  30. Mallakpour S, Abdolmaleki A, Khalesi Z, Borandeh S (2015) Surface functionalization of GO, preparation and characterization of PVA/TRIS-GO nanocomposites. Polymer 81:140–150. https://doi.org/10.1016/j.polymer.2015.11.005

    Article  CAS  Google Scholar 

  31. Zhou T, Cheng X, Pan Y et al (2019) Mechanical performance and thermal stability of polyvinyl alcohol–cellulose aerogels by freeze drying. Cellulose 26:1747–1755. https://doi.org/10.1007/s10570-018-2179-3

    Article  CAS  Google Scholar 

  32. Kim K-J, Lee S-B, Han N-W (1994) Kinetics of crosslinking reaction of PVA membrane with glutaraldehyde. Korean J Chem Eng 11:41–47. https://doi.org/10.1007/BF02697513

    Article  CAS  Google Scholar 

  33. Tang C, Saquing CD, Harding JR, Khan SA (2010) In situ cross-linking of electrospun poly(vinyl alcohol) nanofibers. Macromolecules 43:630–637. https://doi.org/10.1021/ma902269p

    Article  CAS  Google Scholar 

  34. Qiu K, Netravali AN (2012) Bacterial cellulose-based membrane-like biodegradable composites using cross-linked and noncross-linked polyvinyl alcohol. J Mater Sci 47:6066–6075. https://doi.org/10.1007/s10853-012-6517-9

    Article  CAS  Google Scholar 

  35. Zhao G, Dai C, Wen D, Fang J (2016) Stability mechanism of a novel three-phase foam by adding dispersed particle gel. Coll Surf A Physicochem Eng Asp 497:214–224. https://doi.org/10.1016/j.colsurfa.2016.02.037

    Article  CAS  Google Scholar 

  36. Noh W, Kim TH, Lee K-W, Lee TS (2020) Selective adsorption of sodium dodecylbenzenesulfonate from a Cs ion mixture by electrospun mesoporous silica nanofibers. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.127391

    Article  PubMed  Google Scholar 

  37. Rotariu T, Pulpea D, Toader G et al (2022) Peelable nanocomposite coatings: “Eco-Friendly” tools for the safe removal of radiopharmaceutical spills or accidental contamination of surfaces in general-purpose radioisotope laboratories. Pharmaceutics 14:2360. https://doi.org/10.3390/pharmaceutics14112360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fu Z-Z, Yao Y-H, Guo S-J et al (2022) Effect of plasticization on stretching stability of poly(vinyl alcohol) films: a case study using glycerol and water. Macromol Rapid Commun. https://doi.org/10.1002/marc.202200296

    Article  PubMed  Google Scholar 

  39. Lee SD (2017) Evaluation of low-tech indoor remediation methods following wide area radiological/nuclear incidents. Environmental Protection Agency, U.S

    Google Scholar 

  40. Lee SD (2012) Water wash down of radiological dispersal device (RDD) material on urban surfaces: effect of washing conditions on cs removal efficacy. National Homeland Security Research Center

  41. Song J-W, Zeng D-L, Fan L-W (2020) Temperature dependence of contact angles of water on a stainless steel surface at elevated temperatures and pressures: In situ characterization and thermodynamic analysis. J Colloid Interface Sci 561:870–880. https://doi.org/10.1016/j.jcis.2019.11.070

    Article  CAS  PubMed  Google Scholar 

  42. Kim D, Kim JG, Chu CN (2016) Aging effect on the wettability of stainless steel. Mater Lett 170:18–20. https://doi.org/10.1016/j.matlet.2016.01.107

    Article  CAS  Google Scholar 

  43. Estrade-Szwarckopf H (2004) XPS photoemission in carbonaceous materials: a “defect” peak beside the graphitic asymmetric peak. Carbon 42:1713–1721. https://doi.org/10.1016/j.carbon.2004.03.005

    Article  CAS  Google Scholar 

  44. Donald SB, Dai ZR, Davisson ML et al (2017) An XPS study on the impact of relative humidity on the aging of UO2 powders. J Nucl Mater 487:105–112. https://doi.org/10.1016/j.jnucmat.2017.02.016

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

HZ, experimental, writing; ZL, experimental guidance; SW, framework construction of the paper; KZ Data helped with data analysis; HZ and JL translated the article. YZ provided language assistance and YW provided proofreading assistance. Two corresponding authors have the same contribution.

Corresponding authors

Correspondence to Zhanguo Li or Shanqiang Wang.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Li, Z., Zhang, K. et al. Removal of uranium from steel surface by polyvinyl alcohol foaming gel. J Radioanal Nucl Chem 332, 3697–3710 (2023). https://doi.org/10.1007/s10967-023-09055-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09055-4

Keywords

Navigation