Skip to main content
Log in

Hydrothermal synthesis of novel activated carbon–nickel oxide nanocomposites for uranium adsorption

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The adsorption of uranium on activated carbon–nickel oxide (AC-NiO) nano-composites was investigated using the CCD method. AC was synthesized from degreased waste canola sediments by chemical activation method. Nickel oxide and AC-NiO nanocomposites were synthesized individually by hydrothermal technique. The average particle size of nano-compposite adsorbent was found to be 17.64 ± 1.51 nm. Uranium adsorption capacity was calculated as 136.92 ± 4.7 mg g−1. Using the Langmuir isotherm, the total number of binding sites and adsorption energy were 131.58 mg g−1 and 0.25 L mg−1, respectively. The system was spontaneous, unfavorable at high temperatures and physisorption dominated process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Olszewska W, Miśkiewicz A, Zakrzewska-Kołtuniewicz G, Lankof L, Pajak L (2014) Multibarrier system preventing migration of radionuclides from radioactive waste repository. Nukleonika 60(3):557–563

    Article  Google Scholar 

  2. Choppin GR, Wong PJ (1996) Current status of radioactive waste disposal. J Radioanal Nucl Chem 203(2):575–590

    Article  CAS  Google Scholar 

  3. Management RW (2017) The multi-barrier approach. Radioact Waste Manag:1–7

  4. Afsari M, Safdari J, Towfighi J, Mallah MH (2012) The adsorption characteristics of uranium hexafluoride onto activated carbon in vacuum conditions. Ann Nucl Energy 46:144–151

    Article  CAS  Google Scholar 

  5. Kaçan E, Kütahyali C (2012) Adsorption of strontium from aqueous solution using activated carbon produced from textile sewage sludges. J Anal Appl Pyrolysis 97:149–157

    Article  Google Scholar 

  6. Farahmand E (2016) Adsorption of cerium(IV) from aqueous solutions using activated carbon developed from rice straw. Open J Geol 06(03):189–200

    Article  CAS  Google Scholar 

  7. Belgacem A, Rebiai R, Hadoun H (2013) The removal of uranium(VI) from aqueous solutions onto activated carbon developed from grinded used tire, no. VI

  8. Kaveeshwar AR, Kumar PS, Revellame ED, Gang DD, Zappi ME, Subramaniam R (2018) Adsorption properties and mechanism of barium (II) and strontium (II) removal from fracking wastewater using pecan shell based activated carbon. J Clean Prod 193:1–13

    Article  CAS  Google Scholar 

  9. El-Maghrabi HH, Younes AA, Salem AR, Rabie K, Sayed El-shereafy E (2019) (2019) Magnetically modified hydroxyapatite nanoparticles for the removal of uranium (VI): preparation, characterization and adsorption optimization. J Hazard Mater 378:120703

    Article  CAS  PubMed  Google Scholar 

  10. Kaynar ÜH, Ayvacıklı M, Kaynar SÇ, Hiçsönmez Ü (2014) Removal of uranium(VI) from aqueous solutions using nanoporous ZnO prepared with microwave-assisted combustion synthesis. J Radioanal Nucl Chem 299(3):1469–1477

    Article  CAS  Google Scholar 

  11. Kutahyali Aslani C, Belloni F, Çetinkaya B, Rondinella VV (2014) Sorption studies of strontium on carbon nanotubes using the Box-Behnken design. Radiochim Acta 102(10):931–940

    Article  Google Scholar 

  12. Yılmaz CE, Aslani MAA, Kutahyali Aslani C (2020) Removal of thorium by modified multi-walled carbon nanotubes: optimization, thermodynamic, kinetic, and molecular dynamic viewpoint. Prog Nucl Energy 127:103445

    Article  Google Scholar 

  13. Endes Yilmaz C, Aslani MAA, Kutahyali Aslani C (2019) Adsorption of Th(IV) on the modified multi-walled carbon nanotubes using central composite design. Radiochim Acta 107(5):377–386

    Article  CAS  Google Scholar 

  14. Boveiri Monji A, Ghoulipour V, Mallah MH, Maraghe-Mianji B (2015) Selective sorption of thorium (IV) from highly acidic aqueous solutions by rice and wheat bran. J Radioanal Nucl Chem 303(1):949–958

    Article  CAS  Google Scholar 

  15. Ozudogru Y (2019) Removal of Thorium (IV) ion By using modified cystoseira barbata. J Sci Perspect 3(3):245–252

    Google Scholar 

  16. Gok C, Aytas S (2014) Chapter 16: biosorption of uranium and thorium by biopolymers. The Role of Colloidal Systems in Environmental Protection, pp 363–395

  17. Huang Y, Hu Y, Chen L, Yang T, Huang H, Shi R, Lu P (2018) Selective biosorption of thorium (IV) from aqueous solutions by ginkgo leaf. PLoS ONE 13(3):1–25

    Article  Google Scholar 

  18. Konovalov K, Sachkov V (2017) Synthesis of ion-exchange resin for selective thorium and uranyl ions sorption. AIP Conf. Proc., vol 1899

  19. Rahmani-Sani A, Hosseini-Bandegharaei A, Hosseini SH, Kharghani K, Zarei H, Rastegar A (2015) Kinetic, equilibrium and thermodynamic studies on sorption of uranium and thorium from aqueous solutions by a selective impregnated resin containing carminic acid. J Hazard Mater 286:152–163

    Article  CAS  PubMed  Google Scholar 

  20. Danon J (1956) Adsorption of thorium by anion-exchange resins from nitric acid media. J Am Chem Soc 78(22):5953–5954

    Article  CAS  Google Scholar 

  21. Syed HS (1999) Comparison studies adsorption of thorium and uranium on pure clay minerals and local Malaysian soil sediments. J Radioanal Nucl Chem 241(1):11–14

    Article  CAS  Google Scholar 

  22. Bao L, Guo F, Wang H, Larson SL, Ballard JH, Knotek-Smith HM, Zhang Q, Nie J, Celik A, Islam SM, Dasari S, Zhang N, Han F (2021) Functionalization of clay surface for the removal of uranium from water. MethodsX 8:4–8

    Article  Google Scholar 

  23. Missana T, Garcia-Gutierrez M, Alonso U (2008) Sorption of strontium onto illite/smectite mixed clays. Phys Chem Earth 33(SUPPL. 1):156–162

    Article  Google Scholar 

  24. Khandaker S, Toyohara Y, Saha GC, Awual MR, Kuba T (2019) (2020) Development of synthetic zeolites from bio-slag for cesium adsorption: Kinetic, isotherm and thermodynamic studies. J Water Process Eng 33(October):101055

    Google Scholar 

  25. Mimura H, Akiba K (1993) Adsorption behavior of cesium and strontium on synthetic zeolite P. J Nucl Sci Technol 30(5):436–443

    Article  CAS  Google Scholar 

  26. Araujo L, Medeiros VL, Guarnieri GP, Silva DA, Watanabe T, Marumo JT, Nery JG (2023) An adsorption agent based on chitosan-zeolite composite: environmental and radioactive liquid waste remediation. Environ Sci Adv 2(3):484–494

    Article  Google Scholar 

  27. Alhan S, Nehra M, Dilbaghi N, Singhal NK, Kim KH, Kumar S (2019) Potential use of ZnO@activated carbon nanocomposites for the adsorptive removal of Cd2+ ions in aqueous solutions. Environ Res 173:411–418

    Article  CAS  PubMed  Google Scholar 

  28. Zhou K, Ma W, Zeng Z, Ma X, Xu X, Guo Y, Li H, Li L (2019) Experimental and DFT study on the adsorption of VOCs on activated carbon/metal oxides composites. Chem Eng J 372:1122–1133

    Article  CAS  Google Scholar 

  29. Mohanta D, Ahmaruzzaman M (2018) Bio-inspired adsorption of arsenite and fluoride from aqueous solutions using activated carbon@SnO2 nanocomposites: isotherms, kinetics, thermodynamics, cost estimation and regeneration studies. J Environ Chem Eng 6(1):356–366

    Article  CAS  Google Scholar 

  30. Hong SJ, Mun HJ, Kim BJ, Kim YS (2021) Characterization of nickel oxide nanoparticles synthesized under low temperature. Micromachines 12(10)

  31. Bonomo M (2018) Synthesis and characterization of NiO nanostructures: a review. J Nanoparticle Res 20(8)

  32. Jiang Y, Jia Z, Zhang W, Suo H (2013) In situ hydrothermal synthesis of nickel oxide nanostructures by thermal decomposition and its electrochemical property. J Inorg Organomet Polym Mater 23(4):1043–1047

    Article  CAS  Google Scholar 

  33. Kutahyali Aslani C, Amik O (2021) Active Carbon/PAN composite adsorbent for uranium removal: modeling adsorption isotherm data, thermodynamic and kinetic studies. Appl Radiat Isot 168:109474

    Article  Google Scholar 

  34. Byrappa K, Yoshimura M (1992) Handbook of hydrothermal technology a technology for crystal growth and materials processing 4(6)

  35. Endes Yılmaz C (2022) Synthesis of activated carbon–nickel oxide nanocomposite by fuzzy logic system and modelling with response surface methodology for uranium removal. Ege University, Turkey

    Google Scholar 

  36. Mellah A, Chegrouche S, Barkat M (2006) The removal of uranium(VI) from aqueous solutions onto activated carbon: Kinetic and thermodynamic investigations. J Colloid Interface Sci 296(2):434–441

    Article  CAS  PubMed  Google Scholar 

  37. Ayawei N, Ebelegi AN, Wankasi D (2017) Modelling and interpretation of adsorption isotherms. J Chem 2017

  38. Alcaraz L, López Fernández A, García-Díaz I, López FA (2018) Preparation and characterization of activated carbons from winemaking wastes and their adsorption of methylene blue. Adsorpt Sci Technol 36(5–6):1331–1351

    Article  CAS  Google Scholar 

  39. Il Jang D, Park SJ (2012) Influence of nickel oxide on carbon dioxide adsorption behaviors of activated carbons. Fuel 102:439–444

    Article  Google Scholar 

  40. Ramasami AK, Reddy MV, Balakrishna GR (2015) Combustion synthesis and characterization of NiO nanoparticles. Mater Sci Semicond Process 40:194–202

    Article  CAS  Google Scholar 

  41. Zhu H, Dong H, Laveille P, Saih Y, Caps V, Basset JM (2014) Metal oxides modified NiO catalysts for oxidative dehydrogenation of ethane to ethylene. Catal Today 228:58–64

    Article  CAS  Google Scholar 

  42. Mironova-Ulmane N, Kuzmin A, Grabis J, Sildos I, Voronin VI, Berger IF, Kazantsev VA (2011) Structural and magnetic properties of nickel oxide nanopowders. Solid State Phenom 168–169:341–344

    Google Scholar 

  43. Viswanathan B, Neel P, Varadarajan T (2009) Methods of activation and specific applications of carbon materials. Catal Res Indian Inst

  44. Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53(3):1126–1130

    Article  CAS  Google Scholar 

  45. Cançado LG, Takai K, Enoki T, Endo M, Kim YA, Mizusaki H, Jorio A, Coelho LN, Magalhães-Paniago R, Pimenta MA (2006) General equation for the determination of the crystallite size la of nanographite by Raman spectroscopy. Appl Phys Lett 88(16):1–4

    Article  Google Scholar 

  46. Abioye AM, Ani FN (2015) Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: a review. Renew Sustain Energy Rev 52:1282–1293

    Article  CAS  Google Scholar 

  47. Myers RH, Montgomery DC, Anderson-Cook CM (2009) Response surface methodology: process and product optimization using designed experiments, 3rd edn. Wiley

    Google Scholar 

  48. Chen S, Hong J, Yang H, Yang J (2013) Adsorption of uranium (VI) from aqueous solution using a novel graphene oxide-activated carbon felt composite. J Environ Radioact 126:253–258

    Article  CAS  PubMed  Google Scholar 

  49. Nezhad MM, Semnani A, Tavakkoli N, Shirani M (2021) Selective and highly efficient removal of uranium from radioactive effluents by activated carbon functionalized with 2-aminobenzoic acid as a new sorbent. J Environ Manage 299:113587

    Article  CAS  PubMed  Google Scholar 

  50. Wang J, Guo X (2020) Adsorption kinetic models: physical meanings, applications, and solving methods. J Hazard Mater 390:122156

    Article  CAS  PubMed  Google Scholar 

  51. Dolatyari L, Yaftian MR, Rostamnia S (2016) Removal of uranium(VI) ions from aqueous solutions using Schiff base functionalized SBA-15 mesoporous silica materials. J Environ Manage 169:8–17

    Article  CAS  PubMed  Google Scholar 

  52. Kütahyali C, Eral M (2004) Selective adsorption of uranium from aqueous solutions using activated carbon prepared from charcoal by chemical activation. Sep Purif Technol 40(2):109–114

    Article  Google Scholar 

  53. Štamberg K, Venkatesan KA, Vasudeva Rao PR (2003) Surface complexation modeling of uranyl ion sorption on mesoporous silica. Colloids Surf A Physicochem Eng Asp 221(1–3):149–162

    Article  Google Scholar 

  54. Starvin AM, Rao TP (2004) Solid phase extractive preconcentration of uranium(VI) onto diarylazobisphenol modified activated carbon. Talanta 63(2):225–232

    Article  CAS  PubMed  Google Scholar 

  55. Kütahyali C, Eral M (2010) Sorption studies of uranium and thorium on activated carbon prepared from olive stones: Kinetic and thermodynamic aspects. J Nucl Mater 396(2–3):251–256

    Article  Google Scholar 

  56. Yekta S, Sadeghi M, Ghaedi H (2019) (2016) Removal of uranium (U(VI)) ions using NiO NPs/Ag-clinoptilolite zeolite composite adsorbent from drinking water: equilibrium, kinetic and thermodynamic studies. Int J Bio-Inorganic Hybrid Nanomater 5:279–295

    Google Scholar 

  57. Pu D, Kou Y, Zhang L, Liu B (2019) Waste cigarette filters: activated carbon as a novel sorbent for uranium removal. J Radioanal Nucl Chem 320(3):725–731

    Article  CAS  Google Scholar 

  58. Sun Y, Peng D, Li Y, Guo H, Zhang N, Wang H, Mei P, Ishag A, Alsulami H, Alhodaly MS (2020) A robust prediction of U(VI) sorption on Fe3O4/activated carbon composites with surface complexation model. Environ Res 185:109467

    Article  CAS  PubMed  Google Scholar 

  59. Kishore Ramanan K, Rohith S, Santosh Srinivas N, Subbiah DK, Rayappan JBB, Jegadeesan GB (2021) NiOx modified cellulose cloth for the removal of U(VI) from water. Adv Powder Technol 32(11):4343–4355

    Article  CAS  Google Scholar 

  60. Almeida CAP, Debacher NA, Downs AJ, Cottet L, Mello CAD (2009) Removal of methylene blue from colored effluents by adsorption on montmorillonite clay. J Colloid Interface Sci 332(1):46–53

    Article  CAS  PubMed  Google Scholar 

  61. Aslani MAA, Celik F, Yusan S, Kutahyali Aslani C (2017) Assessment of the adsorption of thorium onto styrene–divinylbenzene-based resin: Optimization using central composite design and thermodynamic parameters. Process Saf Environ Prot 109:192–202

    Article  CAS  Google Scholar 

  62. Aslani MAA, Yusan S, Yenil N, Kuzu S (2012) Sorption profile of uranium (VI) from aqueous medium onto 3-O-acetyl-(S)-1,2-O-trichloroethylidene-5,6,8-trideoxy-α-d-xylo-oct-5(E)-eno-1,4-furano-7-ulose (OASOTCETDOXDXOEEFU). Chem Eng J 200–202:391–398

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors would like to acknowledge for TUBITAK (The Scientific and Technological Research Council of TURKEY) and Council of Higher Education Scholar for research support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cansu Endes Yılmaz.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Endes Yılmaz, C., Nostar Aslan, E., Aslani, M.A.A. et al. Hydrothermal synthesis of novel activated carbon–nickel oxide nanocomposites for uranium adsorption. J Radioanal Nucl Chem 332, 4791–4805 (2023). https://doi.org/10.1007/s10967-023-09006-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09006-z

Keywords

Navigation