Skip to main content
Log in

Stable neodymium isotopic composition of nuclear debris samples

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Fission reactions result in Nd isotope decay products which alter Nd isotopic compositions measured in nuclear debris. Trinitite samples measured by MC-ICP-MS show perturbations of Nd isotopes relative to 142Nd, the only isotope of Nd which is blocked from fission product decay. By measuring 144Nd/142Nd and the total number of atoms of 142Nd in the sample, it is possible to quantify the total number of fissions in nuclear debris, an important signature in post-detonation nuclear forensics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tilden JA, Boyd D (2021) The evolving missions of technical nuclear forensics. The National Interest 174. Available at https://nationalinterest.org/feature/evolving-missions-technical-nuclear-forensics-189058. Accessed 15 May 2023

  2. Nicolaou G (2009) Identification of unknown irradiated nuclear fuel through its fission product content. J Radioanal Nucl Chem 279:503–508. https://doi.org/10.1007/s10967-007-7300-x

    Article  CAS  Google Scholar 

  3. Laurec J, Adam A, de Bruyne T, Bauge E, Granier T, Aupiais J, Bersillon O, Le Petit G, Authier N, Casoli P (2010) Fission product yields of U-233, U-235, U-238 and (PU)-P-239 in fields of thermal neutrons, fission neutrons and 14.7-MeV neutrons. Nucl Data Sheets 111:2965–2980. https://doi.org/10.1016/j.nds.2010.11.004

    Article  CAS  Google Scholar 

  4. Loss RD, Delaeter JR, Rosman KJR, Benjamin TM, Curtis DB, Gancarz AJ, Delmore JE, Maeck WJ (1988) The Oklo natural reactors—cumulative fission yields and nuclear characteristics of reactor-Zone-9. Earth Planet Sci Lett 89:193–206. https://doi.org/10.1016/0012-821x(88)90172-0

    Article  CAS  Google Scholar 

  5. Cassata WS, Prussin SG, Knight KB, Hutcheon ID, Isselhardt BH, Renne PR (2014) When the dust settles: stable xenon isotope constraints on the formation of nuclear fallout. J Environ Radioactiv 137:88–95. https://doi.org/10.1016/j.jenvrad.2014.06.011

    Article  CAS  Google Scholar 

  6. Hanson SK, Pollington AD, Waidmann CR, Kinman WS, Wende AM, Miller JL, Berger JA, Oldham WJ, Selby HD (2016) Measurements of extinct fission products in nuclear bomb debris: determination of the yield of the Trinity nuclear test 70 y later. Proc Natl Acad Sci 113:8104–8108. https://doi.org/10.1073/pnas.1602792113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sharp N, McDonough WF, Ticknor BW, Ash RD, Piccoli PM, Borg DT (2014) Rapid analysis of trinitite with nuclear forensic applications for post-detonation material analyses. J Radioanal Nucl Chem 302:57–67. https://doi.org/10.1007/s10967-014-3285-9

    Article  CAS  Google Scholar 

  8. Meininger DJ, Kinman WS, Hanson SK (2023) Measurement of mass-independent perturbations of cadmium in nuclear debris samples. Geostand Geoanal Res. https://doi.org/10.1111/ggr.12475

    Article  Google Scholar 

  9. England TR, Rider BF (1994) ENDF-349 Evaluation and compilation of fission product yields. Los Alamos National Laboratory, LA-UR-94-3106:1–173. Available at https://t2.lanl.gov/nis/publications/endf349.pdf. Accessed 15 May 2023

  10. Eby NHR, Charnley N, Smoliga JA (2010) Trinitite—the atomic rock. Geol Today 26:180–185

    Article  Google Scholar 

  11. Tanaka T, Togashi S, Kamioka H, Amakawa H, Kagami H, Hamamoto T, Yuhara M, Orihashi Y, Yoneda S, Shimizu H, Kunimaru T, Takahashi K, Yanagi T, Nakano T, Fujimaki H, Shinjo R, Asahara Y, Tanimizu M, Dragusanu C (2000) JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chem Geol 168:279–281. https://doi.org/10.1016/S0009-2541(00)00198-4

    Article  Google Scholar 

  12. Borg LE, Connelly JN, Cassata WS, Gaffney AM, Bizzarro M (2017) Chronologic implications for slow cooling of troctolite 76535 and temporal relationships between the Mg-suite and the ferroan anorthosite suite. Geochim Cosmochim Ac 201:377–391. https://doi.org/10.1016/j.gca.2016.11.021

    Article  CAS  Google Scholar 

  13. Mayer AJ, Wieser ME (2014) The absolute isotopic composition and atomic weight of molybdenum in SRM 3134 using an isotopic double-spike. J Anal Atom Spectrom 29:85–94. https://doi.org/10.1039/c3ja50164g

    Article  CAS  Google Scholar 

  14. Wakaki S, Tanaka T (2012) Stable isotope analysis of Nd by double spike thermal ionization mass spectrometry. Int J Mass Spectrom 323:45–54. https://doi.org/10.1016/j.ijms.2012.06.019

    Article  CAS  Google Scholar 

  15. Shibata K, Iwamoto O, Nakagawa T, Iwamoto N, Ichihara A, Kunieda S, Chiba S, Furutaka K, Otuka N, Ohsawa T, Murata T, Matsunobu H, Zukeran A, Kamada S, Katakura J (2011) JENDL-4.0: a new library for nuclear science and engineering. J Nucl Sci Technol 48:1–30. https://doi.org/10.3327/jnst.48.1

    Article  CAS  Google Scholar 

  16. Goldstein SL, Hemming SR (2003) 6.17-Long-lived Isotopic tracers in oceanography, paleoceanography, and ice-sheet. Dynamics treatise on geochemistry. Pergamon, Oxford. https://doi.org/10.1016/B0-08-043751-6/06179-X

    Book  Google Scholar 

  17. Freiling EC (1961) Radionuclide fractionation in bomb debris-fractionation systematics for high-yield bursts at sea-water and coral surfaces are delineated. Science 133:1991–1998. https://doi.org/10.1126/science.133.3469.1991

    Article  CAS  PubMed  Google Scholar 

  18. Gautam I, Ray JS, Bhutani R, Balakrishnan S, Dash JK (2017) Role of fractionation correction in accurate determination of Nd-142/Nd-144 by TIMS: a case study of 1.48 Ga alkaline rocks from Khariar. India Chem Geol 466:479–490. https://doi.org/10.1016/j.chemgeo.2017.06.036

    Article  CAS  Google Scholar 

  19. Jochum KP, Nohl L, Herwig K, Lammel E, Stoll B, Hofmann AW (2005) GeoReM: a new geochemical database for reference materials and isotopic standards. Geostand Geoanalyt Res 29:333–338. https://doi.org/10.1111/j.1751-908X.2005.tb00904.x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Office of Defense Nuclear Nonproliferation Research and Development within the U.S. Department of Energy’s National Nuclear Security Administration. This document is approved for unlimited public release through Los Alamos National Laboratory under LA-UR-23-21065.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genna M. Patton.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 27 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patton, G.M., Inglis, J.D., Sanborn, M.E. et al. Stable neodymium isotopic composition of nuclear debris samples. J Radioanal Nucl Chem 332, 2715–2723 (2023). https://doi.org/10.1007/s10967-023-08935-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08935-z

Keywords

Navigation