Skip to main content
Log in

Plutonium isotopes in the Qinling Mountains of China

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In order to study the effect of air masses on the distribution of artificial radionuclides on both sides of the mountain range, Pu and 137Cs in forest soils of the Qinling Mountains in Shaanxi Province were determined for the first time. The 239+240Pu and 137Cs activity concentrations ranged from 0.001 ± 0.001 to 0.501 ± 0.031 Bq/kg and 0.27 ± 0.06 to 7.82 ± 0.34 Bq/kg, respectively. The 240Pu/239Pu atom ratios in samples ranged from 0.160 ± 0.024 to 0.218 ± 0.037 with an average value of 0.188 ± 0.014, indicated that Pu isotopes from the Qinling Mountains mainly came from global fallout. The results of this research add the 239+240Pu activity concentrations and 240Pu/239Pu atom ratio of the Qinling Mountains, the atmospheric circulation in the Qinling Mountains did not significantly affect the Pu content. Also, it provides significant data on the radioactivity of Chinese soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. UNSCEAR (2000) Vol 1, UN, NewYork, pp 158–291

  2. Kelley JM, Bond LA, Beasley TM (1999) Sci Total Environ 237–238:483–500

    Article  PubMed  Google Scholar 

  3. Wendt K, Blaum K, Bushaw BA, Grüning C, Horn R, Huber G, Kratz JV, Kunz P, Müller P, Nörtershäuser W, Nunnemann M, Passler G, Schmitt A, Trautmann N, Waldek A (1999) Fresenius J Anal Chem 364:471–477

    Article  CAS  Google Scholar 

  4. Zheng J, Tagami K, Uchida S (2013) Environ Sci Technol 47:9584–9595

    Article  CAS  PubMed  Google Scholar 

  5. Warneke T, Croudace IW, Warwick PE, Taylor RN (2002) Earth Planet Sci Lett 203:1047–1057

    Article  CAS  Google Scholar 

  6. Muramatsu Y, Hamilton T, Uchida S, Tagami K, Yoshida S, Robison W (2001) Sci Total Environ 278:151–159

    Article  CAS  PubMed  Google Scholar 

  7. Zhang W, Hou X (2019) Chemosphere 230:587–595

    Article  CAS  PubMed  Google Scholar 

  8. Aoyama M, Hirose K, Igarashi Y (2006) J Environ Monit 8:431–438

    Article  CAS  PubMed  Google Scholar 

  9. Bunzl W (2001) J Environ Radioact 53(1):41–57

    Article  PubMed  Google Scholar 

  10. Xu Y, Qiao J, Hou X, Pan S (2013) Sci Rep 3:3506

    Article  PubMed  PubMed Central  Google Scholar 

  11. Huang Y, Tims SG, Froehlich MB, Pan S, Fifield LK, Pavetich S, Koll D (2019) Sci Total Environ 678:603–610

    Article  CAS  PubMed  Google Scholar 

  12. Zheng J, Yamada M, Wu F, Liao H (2009) J Environ Radioact 100:71–75

    Article  CAS  PubMed  Google Scholar 

  13. Dang H, Yi X, Zhang Z, Zhang H, Lin J, Zhang W, Zhai S, Zhang J, Bai T, Zhang X, Liang J, Wang W (2021) J Environ Radioact 233:106614

    Article  CAS  PubMed  Google Scholar 

  14. Bu W, Zheng J, Guo Q, Uchida S (2014) J Environ Radioact 136:174–180

    Article  CAS  PubMed  Google Scholar 

  15. Guan Y, Zhang P, Huang C, Wang D, Wang X, Li L, Han X, Liu Z (2021) J Environ Radioact 229–230:106548

    Article  PubMed  Google Scholar 

  16. Matisoff G, Whiting PJ (2012) Adv Isot Geochem 1:487–519

    Article  Google Scholar 

  17. UNSCEAR (1993) UN, New York, p. 121

  18. Zhang W, Hou X, Zhang H, Wang Y, Dang H, Xing S, Chen N (2021) Environ Pollut 289:117967

    Article  CAS  PubMed  Google Scholar 

  19. Yordanova I, Staneva D, Bineva T, Stoeva N (2007) Agronomski Fakultet Zagreb

  20. Zhao X, Qiao J, Hou X (2020) Environ Pollut 265:114929

    Article  CAS  PubMed  Google Scholar 

  21. Alewell C, Meusburger K, Juretzko G, Mabit L, Ketterer ME (2014) Chemosphere 103:274–280

    Article  CAS  PubMed  Google Scholar 

  22. Wusheng Yu, Stephen L, Tandong Y, Lide T, Dongmei Qu (2014) Int J Climatol: J Royal Meteorol Soc 34:1760–1772

    Article  Google Scholar 

  23. Guan Y, Sun S, Sun S, Wang H, Ruan X, Liu Z, Terrasi F, Gialanella L, Shen H (2018) Nucl Instrum Methods Phys Res, Sect B 437:61–65

    Article  CAS  Google Scholar 

  24. Guan Y, Mai J, Wang H, Zhang P, Huang C, Liu Z, Zhan X, Cesare M, He X, Wang X (2021) Appl Radiat Isot 176:109873

    Article  CAS  PubMed  Google Scholar 

  25. Zheng J, Yamada M (2006) Environscitechnol 40:4103

    CAS  Google Scholar 

  26. Bu W, Zheng J, Guo Q, Aono T, Tazoe H, Tagami K, Uchida S, Yamada M (2013) Environ Sci Technol 48:534–541

    Article  PubMed  Google Scholar 

  27. Wang Z, Zheng J, Ni Y, Men W, Tagami K (2017) Anal Chem 89:2221–2226

    Article  CAS  PubMed  Google Scholar 

  28. Bu W, Guo Q, Zheng J, Uchida S (2016) J Radioanal Nucl Chem 311:999–1005

    Article  Google Scholar 

  29. Dong W, Tims SG, Fifield LK, Guo Q (2010) J Environ Radioact 101:29–32

    Article  CAS  PubMed  Google Scholar 

  30. Wei XU, Pan S, Jia P, Yang X, Cao L, Zhang W, Xiangdong R, Guan Y (2015) Geogr Res 34:655–665

    Google Scholar 

  31. Xu Y, Pan S, Wu M, Zhang K, Hao Y (2017) Sci Total Environ 581–582:541–549

    Article  PubMed  Google Scholar 

  32. Ni Y, Wang Z, Guo Q, Zheng J, Li S, Lin J, Tan Z, Huang W (2018) Chemosphere 212:1002–1009

    Article  CAS  PubMed  Google Scholar 

  33. Sha L, Yamamoto M (1991) Environ Sci 06:58–63

    Google Scholar 

  34. Feng D, Yang F, Wang X, Zhou X, Liu Z, Liao H (2022) J Environ Radioact 242:106792

    Article  CAS  PubMed  Google Scholar 

  35. Cao L, Zhou Z, Wang N, Wang Z (2019) J Radioanal Nucl Chem 322:649–654

    Article  CAS  Google Scholar 

  36. Huang Y, Sun X, Zhang W, Xiao Z (2022) Sci Total Environ 824:153724

    Article  CAS  PubMed  Google Scholar 

  37. Van Pelt RS, Ketterer ME (2013) Aeol Res 9:103–110

    Article  Google Scholar 

  38. Qiao J, Hansen V, Hou X, Aldahan A, Possnert G (2012) Appl Radiat Isot 70:1698–1708

    Article  CAS  PubMed  Google Scholar 

  39. Lee MH, Lee CW, Boo BH (1997) J Environ Radioact 37:1–16

    Article  CAS  Google Scholar 

  40. Zhang W, Xing S, Hou X (2019) Soil and Tillage Res 191:162–170

    Article  Google Scholar 

  41. Zhang W, Hou X, Dang H, Chen N, Zhang H (2023) Sci Total Environ 857:159471

    Article  CAS  PubMed  Google Scholar 

  42. Yim SA, Chae J-S, Byun J-I, Ko S-H (2018) J Environ Radioact 192:532–542

    Article  CAS  PubMed  Google Scholar 

  43. Ib A, Mjmb C, Mrb C, Je D, Vg D (2021) CATENA 206:105532

    Article  Google Scholar 

  44. Xu Y, Pan S, Wu M, Zhang K, Hao Y (2017) Sci Total Environ 581:541–549

    Article  PubMed  Google Scholar 

  45. Liu Y, Wu G, Hong J, Dong B, Duan A, Bao Q, Zhou L (2012) Clim Dyn 39:1183–1195

    Article  Google Scholar 

  46. Sha L, Yamamoto M, Komura K, Ueno K (1991) Radioanal Nucl Chem 155:45–53

    Article  CAS  Google Scholar 

  47. Bu W, Guo Q (2013) Radiat Protect 33:144–143

    Google Scholar 

  48. Yu W, Wang W, Shen M, Mei T, Xu Z, Wu W, Jin Y (2013) Chemosphere 253:126683

    Google Scholar 

  49. Ni Y, Guo Q, Huang Z, Zheng J, Li S, Huang W, Bu W (2020) Chemosphere 253:126683

    Article  CAS  PubMed  Google Scholar 

  50. Jin YR, Zhou GQ, Wang XH, Xia B (2003) J Liq Chromatogr Relat Technol 26:9-10:1593–1607

    Article  CAS  Google Scholar 

  51. Boulyga SF, Erdmann N, Funk H, Kievets MK, Lomonosova EM, Mansel A, Trautmann N, Yaroshevich OI, Zhuk IV (1997) Radiat Meas 28:349–352

    Article  CAS  Google Scholar 

  52. Mietelski JW, Kubica B, Gaca P, Tomankiewicz E (2008) J Radioanal Nucl Chem 275:523–533

    Article  CAS  Google Scholar 

  53. Tagami K, Tsukada H, Uchida S (2019) Catena 180:341–345

    Article  CAS  Google Scholar 

  54. Zhuo W, Chen B, Li D, Liu H (2008) J Nucl Sci Technol 45:180–184

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12175046 and 11665006), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongjing Guan or Zhiyong Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, Y., Hua, Y., Wang, S. et al. Plutonium isotopes in the Qinling Mountains of China. J Radioanal Nucl Chem 332, 2513–2523 (2023). https://doi.org/10.1007/s10967-023-08921-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08921-5

Keywords

Navigation