Skip to main content
Log in

Behavior of selenium and arsenic in HCl and HNO3 on TRU, TEVA, DGA, and Pb extraction chromatography resins

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The uptake behavior of 73As and 75Se was studied in HCl and HNO3-H2O2 solutions on commercial extraction chromatography resins (TEVA, TRU, DGA, and Pb resin). There was no uptake of 73As or 75Se from HNO3 media. From HCl, there was 75Se uptake at high concentrations on all the resins and no uptake of 73As. Separations of 75Se and 73As on these resins have high yields and high radiopurity for 73As, but limited recovery of 75Se. TRU and TEVA resin may have potential for use in isotope generators as 75Se can be retained for at least 26 days with repeated elutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jennewein M, Lewis MA, Zhao D, Tsyganov E, Slavine N, He J, Watkins L, Kodibagkar VD, O’Kelly S, Kulkarni P, Antich PP, Hermanne A (2008) Vascular imaging of solid tumors in rats with a radioactive arsenic-labeled antibody that binds exposed phosphatidylserine. Clin Cancer Res 14(5):1377–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mandal A, Lahiri S (2012) Production and separation of no-carrier-added 73As and 75Se from 7Li irradiated germanium oxide target. Radiochim Acta 100:856–870

    Article  Google Scholar 

  3. Wycoff DE, Gott MD, DeGraffenreid AJ, Morrow RP, Sisay N, Embree MF, Ballard B, Fassbender ME, Cutler CS, Ketring AR, Jurisson SS (2014) Chromatographic separation of selenium and arsenic: a potential 72Se/72As generator. J Chromatogr A 1340:109–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chattopadhyay S, Pal S, Vimalnath KV, Das MK (2007) A versatile technique for radiochemical separation of medically useful no-carrier-added (nca) radioarsenic from irradiated germanium oxide targets. Appl Radiat Isot 65(11):1202–1207

    Article  CAS  PubMed  Google Scholar 

  5. Kelley K, Hoffman R, Dietrich F, Mustafa M (2006) Neutron Induced Cross sections for Radiochemistry for Isotopes of Arsenic. Lawrence Livermore National Laboratory UCRL-TR-218181

  6. Hanson S, Oldham W (2021) Weapons Radiochemistry: Trinity and Beyond. Nucl Technol 207:S295–S308

    Article  Google Scholar 

  7. Siri S, Segovia MS, Cohen IM (2019) The production of no carrier added arsenic radioisotopes in nuclear reactors. J Radioanal Nucl Chem 319:175–184

    Article  CAS  Google Scholar 

  8. Jahn M, Radchenko V, Filosofov DV, Hauser H, Eisenhut M, Rosch F, Jennewein M (2010) Separation and purification of no-carrier-added arsenic from bulk amounts of germanium for use in radiopharmaceutical labelling. Radiochim Acta 98:807–812

    Article  CAS  Google Scholar 

  9. Mukhopadhyay K, Nayak D, Lahiri S (2002) Separation of no-carrier-added as and Se produced in 16O irradiated cobalt target. J Radioanal Nucl Chem 251(1):159–162

    Article  CAS  Google Scholar 

  10. Nayak D, Lahiri S (2003) Sequential separation of 61Cu, 62,63Zn, 66,67,68Ga, 71,72As, and 73Se produced by heavy ion activation on Cobalt Target. J Nucl Radiochem Sci 4(1):1–3

    Article  Google Scholar 

  11. Feng Y, Phipps MD, Phelps TE, Okoya NC, Baumeister JE, Wycoff DE, Dorman EF, Wooten AL, Vlasenko V, Berendzen AF, Wilbur DS, Hoffman TJ, Cutler CS, Ketring AR, Jurisson SS (2019) Evaluation of 72Se/72As generator and production of 72Se for supplying 72As as a potential PET imaging radionuclide. Appl Radiat Isot 143:113–122

    Article  CAS  PubMed  Google Scholar 

  12. Chajduk E, Doner K, Polkowska-Motrenko H, Bilewicz A (2012) Novel radiochemical separation of arsenic from selenium for 72Se/72As generator. Appl Radiat Isot 70:819–822

    Article  CAS  PubMed  Google Scholar 

  13. Ballard B, Wycoff D, Birnbaum ER, John KD, Lenz JW, Jurisson SS, Cutler CS, Nortier FM, Taylor WA, Fassbender ME (2012) Selenium-72 formation via natBr(p,x) induced by 100 MeV protons: steps towards a novel 72Se/72As generator system. Appl Radiat Isot 70:595–601

    Article  CAS  PubMed  Google Scholar 

  14. Zhu Z, Sasaki Y, Suzuki H, Suzuki S, Kimura T (2004) Cumulative study on solvent extraction of elements by N,N,N′,N′-tetraoctyl-3-oxapentanediamide (TODGA) from nitric acid into n-dodecane. Anal Chim Acta 527(2):163–168

    Article  CAS  Google Scholar 

  15. Aprahamian VH, Demopoulos GP (1995) The Solution Chemistry and Solvent extraction Behaviour of Cu, Fe, Ni, Zn, Pb, Sn, Ag, as, Sb, Bi, Se and Te in Acid Chloride Solutions reviewed from the standpoint of PGM Refining. Miner Process Extr Metall Rev 14(3–4):143–167

    Article  Google Scholar 

  16. Chowdhury MR, Sanyal SK (1993) Separation by solvent extraction of tellurium(IV) and selenium(IV) with tri-n butyl phosphate: some mechanistic aspects. Hydrometallurgy 32(2):189–200

    Article  CAS  Google Scholar 

  17. Nyaba L, Matong JM, Dimpe KM, Nomngongo PN (2016) Speciation of inorganic selenium in environmental samples after suspended dispersive solid phase microextraction combined with inductively coupled plasma spectrometric determination. Talanta 159:174–180

    Article  CAS  PubMed  Google Scholar 

  18. Mafu LD, Msagati TAM, Mamba BB (2014) The simultaneous stripping of arsenic and selenium from wastewaters using hollow-fibre supported liquid membranes. Environ Monit Assess 186:8865–8874

    Article  CAS  PubMed  Google Scholar 

  19. Leddicotte G (1961) The Radiochemistry of Selenium. Subcommittee on Radiochemistry-National Academy of Sciences, Oak Ridge, TN

  20. “DGA Resins” (2022) Eichrom Technologies. https://www.eichrom.com/eichrom/products/dga-resins/. Accessed 1 Nov 2022

  21. Kimura K (1960) Inorganic extraction studies on the system between bis (2-ethyl hexyl)-orthophosphoric acid and hydrochloric acid (I). Bull Chem Soc Jpn 33(8):1038–1046

    Article  CAS  Google Scholar 

  22. Horwitz EP, Chiarizia R, Dietz ML, Diamond H, Nelson DM (1993) Separation and preconcentration of actinides from acidic media by extraction chromatography. Anal Chim Acta 281(2):361–372

    Article  CAS  Google Scholar 

  23. Horwitz EP, Dietz ML, Chiarizia R, Diamond H, Maxwell SL, Nelson M (1995) Separation and preconcentration of actinides by extraction chromatography using a supported liquid anion exchanger: application to the characterization of high-level nuclear waste solutions. Anal Chim Acta 310:63–78

    Article  CAS  Google Scholar 

  24. Horwitz EP, McAlister DR, Bond AH, Barrans RE (2005) Novel extraction Chromatographic Resins based on tetraalkyldiglycolamides: characterization and potential applications. Solvent Extr Ion Exch 23(3):319–344

    Article  CAS  Google Scholar 

  25. Horwitz EP, Gale NH (1994) A lead-selective extraction Chromatographic Resin and its application to the isolation of lead from geological samples. Anal Chim Acta 292:263–273

    Article  CAS  Google Scholar 

  26. Horwitz EP, Dietz ML, Nelson DM, LaRosa JJ, Fairman WD (1990) Concentration and separation of actinides from urine using a supported bifunctional organophosphorus extractant. Anal Chim Acta 238:263–271

    Article  CAS  Google Scholar 

  27. National Nuclear Data Center (2019) Brookhaven National Laboratory. https://www.nndc.bnl.gov/nudat2/indx_dec.jsp. Accessed 6 Dec 2022

  28. Horwitz EP, Dietz M, Chiarizia R, Diamond H, Essling A, Graczyk D (1992) Separation and preconcentration of uranium from acidic media by extraction chromatography. Anal Chim Acta 266:25–37

    Article  CAS  Google Scholar 

  29. Horwitz EP, Chiarizia R, Dietz M (1992) A novel strontium-selective extraction chromatographic resin. Solvent Extr Ion Exch 10:313–336

    Article  CAS  Google Scholar 

  30. Stewart II, Chow A (1993) The separation of tellurium and selenium by polyurethane foam sorbents. Talanta 40(9):1345–1352

    Article  CAS  PubMed  Google Scholar 

  31. Marin L, Lhomme J, Carignan J (2001) Determination of Selenium Concentration in Sixty five reference materials for geochemical analysis by GFAAS after separation with Thiol Cotton. Geostand Geoanal Res 25(2–3):317–324

    Article  CAS  Google Scholar 

  32. Kmak KN, Despotopulos JD, Scielzo ND (2023) Extraction of selenium and arsenic with TOA-impregnated XAD-2 resin from HCl. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-023-08818-3

    Article  Google Scholar 

  33. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. Acta Cryst A 32:751–767

    Article  Google Scholar 

  34. Despotopulos JD, Kmak KN, Gharibyan N, Henderson RA, Moody KJ, Shaughnessy DA, Sudowe R (2016) Characterization of the homologs of flerovium with crown ether based extraction chromatography resins: studies in hydrochloric acid. J Radioanal Nucl Chem 310:1201–1207

    Article  CAS  Google Scholar 

  35. Thakur P, Ward AL (2020) 210Po in the environment: insight into the naturally occurring polonium isotope. J Radioanal Nucl Chem 323:27–49

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was funded by the Laboratory Directed Research and Development Program at LLNL under project tracking code 23-SI-004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly N. Kmak.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kmak, K.N., Despotopulos, J.D. & Scielzo, N.D. Behavior of selenium and arsenic in HCl and HNO3 on TRU, TEVA, DGA, and Pb extraction chromatography resins. J Radioanal Nucl Chem 332, 1647–1655 (2023). https://doi.org/10.1007/s10967-023-08904-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08904-6

Keywords

Navigation