Skip to main content
Log in

Extraction of selenium and arsenic with TOA-impregnated XAD-2 resin from HCl

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The uptake of 75Se and 73As on trioctylamine-impregnated resin from HCl solutions was studied with batch uptake, kinetics, and column studies. Selenium-75 extracts well (Dw ~ 900) at high HCl concentrations (≥ 10 M) with and no extraction of 73As at any HCl concentration. The uptake kinetics were slow with low extraction (Dw < 100) for time periods ≤ 15 min and no clear equilibrium achieved even after 24 h. Column studies were performed to characterize the separation of 75Se and 73As; 75Se is retained from conc. HCl while arsenic is eluted with high yields and high radiopurity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jahn M, Radchenko V, Filosofov DV, Hauser H, Eisenhut M, Rosch F, Jennewein M (2010) Separation and purification of no-carrier-added arsenic from bulk amounts of germanium for use in radiopharmaceutical labelling. Radiochim Acta 98:807–812

    Article  CAS  Google Scholar 

  2. Mukhopadhyay K, Nayak D, Lahiri S (2002) Separation of no-carrier-added As and Se produced in 16O irradiated cobalt target. J Radioanal Nucl Chem 251(1):159–162

    Article  CAS  Google Scholar 

  3. Wycoff DE, Gott MD, DeGraffenreid AJ, Morrow RP, Sisay N, Embree MF, Ballard B, Fassbender ME, Cutler CS, Ketring AR, Jurisson SS (2014) Chromatographic separation of selenium and arsenic: a potential 72Se/72As generator. J Chromatogr A 1340:109–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jennewein M, Lewis MA, Zhao D, Tsyganov E, Slavine N, He J, Watkins L, Kodibagkar VD, O’Kelly S, Kulkarni P, Antich PP, Hermanne A (2008) Vascular imaging of solid tumors in rats with a radioactive arsenic-labeled antibody that binds exposed phosphatidylserine. Clin Cancer Res 14(5):1377–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kelley K, Hoffman R, Dietrich F, Mustafa M (2006) Neutron Induced Cross Sections for Radiochemistry for Isotopes of Arsenic. Lawrence Livermore National Laboratory UCRL-TR-218181

  6. Hanson S, Oldham W (2021) Weapons radiochemistry: trinity and beyond. Nucl Technol 207:S295–S308

    Article  Google Scholar 

  7. Siri S, Segovia MS, Cohen IM (2019) The production of no carrier added arsenic radioisotopes in nuclear reactors. J Radioanal Nucl Chem 319:175–184

    Article  CAS  Google Scholar 

  8. Nayak D, Lahiri S (2003) Sequential separation of 61Cu, 62,63Zn, 66,67,68Ga, 71,72As, and 73Se produced by heavy ion activation on cobalt target. J Nucl Radiochem Sci 4(1):1–3

    Article  Google Scholar 

  9. Mandal A, Lahiri S (2012) Production and separation of no-carrier-added 73As and 75Se from 7Li irradiated germanium oxide target. Radiochim Acta 100:865–870

    Article  CAS  Google Scholar 

  10. Abel EP, Avilov M, Ayres V, Birnbaum E, Bollen G, Bonito G, Bredeweg T, Clause H, Couture A, DeVore J, Dietrich M, Ellison P, Engle J, Ferrieri R, Fitzsimmons J, Friedman M, Georgobiani D, Graves S, Greene J, Lapi S, Loveless CS, Mastren T, Martinez-Gomez C, McGuinness S, Mittig W, Morrissey D, Peaslee G, Pellemoine F, Robertson JD, Scielzo N, Scott M, Severin G, Shaughnessy D, Shusterman J, Singh J, Stoyer M, Sutherlin L, Visser A, Wilkinson J (2019) Isotope harvesting at FRIB: additional opportunities for scientific discovery. J Phys G: Nucl Part Phys 46:100501

    Article  CAS  Google Scholar 

  11. DeGraffenreid AJ, Feng Y, Barnes CL, Ketring AR, Cutler CS, Jurisson SS (2016) Trithiols and their arsenic compounds for potential use in diagnostic and therapeutic radiopharmaceuticals. Nucl Med Biol 43:288–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ballard B, Wycoff D, Birnbaum ER, John KD, Lenz JW, Jurisson SS, Cutler CS, Nortier FM, Taylor WA, Fassbender ME (2012) Selenium-72 formation via natBr(p, x) induced by 100 MeV protons: steps towards a novel 72Se/72As generator system. Appl Radiat Isot 70:595–601

    Article  CAS  PubMed  Google Scholar 

  13. Chajduk E, Doner K, Polkowska-Motrenko H, Bilewicz A (2012) Novel radiochemical separation of arsenic from selenium for 72Se/72As generator. Appl Radiat Isot 70:819–822

    Article  CAS  PubMed  Google Scholar 

  14. Feng Y, Phipps MD, Phelps TE, Okoya NC, Baumeister JE, Wycoff DE, Dorman EF, Wooten AL, Vlasenko V, Berendzen AF, Wilbur DS, Hoffman TJ, Cutler CS, Ketring AR, Jurisson SS (2019) Evaluation of 72Se/72As generator and production of 72Se for supplying 72As as a potential PET imaging radionuclide. Appl Radiat Isot 143:113–122

    Article  CAS  PubMed  Google Scholar 

  15. National Nuclear Data Center (2019) Brookhaven National Laboratory. https://www.nndc.bnl.gov/nudat2/indx_dec.jsp. Accessed 2 December 2022

  16. Horwitz EP, Dietz M, Chiarizia R, Diamond H, Essling A, Graczyk D (1992) Separation and preconcentration of uranium from acidic media by extraction chromatography. Anal Chim Acta 266:25–37

    Article  CAS  Google Scholar 

  17. Horwitz EP, Chiarizia R, Dietz M (1992) A novel strontium-selective extraction chromatographic resin. Solvent Extr Ion Exch 10:313–336

    Article  CAS  Google Scholar 

  18. Stewart II, Chow A (1993) The separation of tellurium and selenium by polyurethane foam sorbents. Talanta 40(9):1345–1352

    Article  CAS  PubMed  Google Scholar 

  19. Marin L, Lhomme J, Carignan J (2001) Determination of selenium concentration in sixty five reference materials for geochemical Analysis by GFAAS after separation with thiol cotton. Geostand Geoanal Res 25(2–3):317–324

    Article  CAS  Google Scholar 

  20. Sanuki S, Jyumonji M, Majima H (2000) Extraction of Ag(I) from aqueous thiocyanate solution with Primene JMT or TOA. Hydrometallurgy 55(2):119–136

    Article  CAS  Google Scholar 

  21. Chilukuri R, Yang Z, Sirkar KK (1998) Batch extraction studies of cationic and anionic heavy metallic species by a mixed solvent extraction system. Sep Sci Technol 33(16):2559–2578

    Article  CAS  Google Scholar 

  22. Aprahamian VH, Demopoulos GP (1995) The solution chemistry and solvent extraction behaviour of Cu, Fe, Ni, Zn, Pb, Sn, Ag, As, Sb, Bi, Se and Te in acid chloride solutions reviewed from the standpoint of PGM refining. Miner Process Extr Metall Rev 14(3–4):143–167

    Article  Google Scholar 

  23. Sargar BM, Mahamuni SV, Anuse MA (2011) Sequential separation of selenium(IV) from tellurium(IV) by solvent extraction with N-n-octylaniline: analysis of real samples. J Saudi Chem Soc 15(2):177–185

    Article  CAS  Google Scholar 

  24. Chowdhury MR, Sanyal SK (1993) Separation by solvent extraction of tellurium(IV) and selenium(IV) with tri-n butyl phosphate: some mechanistic aspects. Hydrometallurgy 32(2):189–200

    Article  CAS  Google Scholar 

  25. Sangtumrong S, Ramakul P, Satayaprasert C, Pancharoen U, Lothongkum AW (2007) Purely separation of mixture of mercury and arsenic via hollow fiber supported liquid membrane. J Ind Eng Chem 13(5):751–756

    CAS  Google Scholar 

  26. Polkowska-Motrenko H, Chajduk E, Dybczynski R (2006) Selective separation of trace amounts of selenium using extraction chromatography and its determination by neutron activation analysis in biological samples. Chem Anal (Warsaw) 51:581

    CAS  Google Scholar 

  27. Hoh Y, Chien C, Cheng W, Shaw I (1983) The separation of selenium from tellurium in hydrochloric acid media by solvent extraction with tri-butyl phosphate. Hydrometallurgy 9(3):381–392

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was funded by the Laboratory Directed Research and Development Program at LLNL under project tracking code 23-SI-004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly N. Kmak.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kmak, K.N., Despotopulos, J.D. & Scielzo, N.D. Extraction of selenium and arsenic with TOA-impregnated XAD-2 resin from HCl. J Radioanal Nucl Chem 332, 1981–1987 (2023). https://doi.org/10.1007/s10967-023-08818-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08818-3

Keywords

Navigation