Skip to main content
Log in

Comparative cytotoxicity of 177Lu on various lung cancer cells and in vivo targeting of 177Lu-labeled cetuximab

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Differences in cellular radiosensitivity and the binding affinity of radiopharmaceuticals could directly affect the radiotherapeutic effects. In this study, we investigated the radionuclide (177Lu) induced radiosensitivity of serval non-small-cell lung cancer cells (NSCLCs) as well as the binding affinity of cetuximab to those cells. The apoptosis of NSCLCs caused by 177Lu was related to the DNA double-strand damage and was cell-type dependent. We also proved that the introduction of 177Lu to the antibody could enhance its cytotoxic effect on NSCLCs. The [177Lu]Lu-DOTA-cetuximab could accumulate in the HCC827 tumor xenografts with excellent stability according to in vivo SPECT/CT imaging and the biodistribution results. The [177Lu]Lu-DOTA-cetuximab showed high potential to be used for targeting diagnosis and radiotherapy in lung cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and Mortality Worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249

    Article  PubMed  Google Scholar 

  2. Zhang XY, Zhang YK, Wang YJ, Gupta P, Zeng L, Xu M, Wang XQ, Yang DH, Chen ZS (2016) Osimertinib (AZD9291), a mutant-selective EGFR inhibitor, reverses ABCB1-mediated drug resistance in cancer cells. Molecules 21(9):1236–1251

    Article  PubMed  PubMed Central  Google Scholar 

  3. Blandin Knight S, Crosbie PA, Balata H, Chudziak J, Hussell T, Dive C (2017) Progress and prospects of early detection in lung cancer. Open Biol 7(9):170070–170082

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jeon HW, Kim YD, Kim KS, Sung SW, Park HJ, Park JK (2014) Sublobar resection versus lobectomy in solid-type, clinical stage IA, non-small cell lung cancer. World J Surg Oncol 12:215–221

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tian D, Ben X, Wang S, Zhuang W, Tang J, Xie L, Zhou H, Zhang D, Zhou Z, Shi R, Deng C, Ding Y, Zhang X, Qiao G (2021) Surgical resection of primary tumors improved the prognosis of patients with bone metastasis of non-small cell lung cancer: a population-based and propensity score-matched study. Ann Transl Med 9(9):775–786

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ozretic L, Heukamp LC, Odenthal M, Buettner R (2012) The role of molecular diagnostics in cancer diagnosis and treatment. Onkologie 35(Suppl 1):8–12

    Article  CAS  PubMed  Google Scholar 

  7. Kalia M (2015) Biomarkers for personalized oncology: recent advances and future challenges. Metabolism 64(3 Suppl 1):S16–21

    Article  CAS  PubMed  Google Scholar 

  8. Ang KK, Andratschke NH, Milas L (2004) Epidermal growth factor receptor and response of head-and-neck carcinoma to therapy. Int J Radiat Oncol Biol Phys 58(3):959–965

    Article  CAS  PubMed  Google Scholar 

  9. Gazdar AF (2009) Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene 28(Suppl 1):S24–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Humblet Y (2004) Cetuximab: an IgG(1) monoclonal antibody for the treatment of epidermal growth factor receptor-expressing tumours. Expert Opin Pharmacother 5(7):1621–1633

    Article  CAS  PubMed  Google Scholar 

  11. Liu W, Li K, Deng H, Wang J, Zhao P, Liao W, Zhuo L, Wei H, Yang X, Chen Y (2022) In vitro and in vivo evaluation of a novel anti-EGFR antibody labeled with 89Zr and 177Lu. J Radioanal Nucl Chem 331(2):747–754

    Article  CAS  Google Scholar 

  12. Shi Y, Au JS, Thongprasert S, Srinivasan S, Tsai CM, Khoa MT, Heeroma K, Itoh Y, Cornelio G, Yang PC (2014) A prospective, molecular epidemiology study of EGFR mutations in asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER). J Thorac Oncol 9(2):154–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kang HN, Kim SH, Yun MR, Kim HR, Lim SM, Kim MS, Hong KW, Kim SM, Kim H, Pyo KH, Park HJ, Han JY, Youn HA, Chang KH, Cho BC (2016) ER2, a novel human anti-EGFR monoclonal antibody inhibit tumor activity in non-small cell lung cancer models. Lung Cancer 95:57–64

    Article  PubMed  Google Scholar 

  14. Mazzarella L, Guida A, Curigliano G (2018) Cetuximab for treating non-small cell lung cancer. Expert Opin Biol Ther 18(4):483–493

    Article  CAS  PubMed  Google Scholar 

  15. Stewart EL, Tan SZ, Liu G, Tsao MS (2015) Known and putative mechanisms of resistance to EGFR targeted therapies in NSCLC patients with EGFR mutations-a review. Transl Lung Cancer Res 4(1):67–81

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Carillio G, Montanino A, Costanzo R, Sandomenico C, Piccirillo MC, Di Maio M, Daniele G, Giordano P, Bryce J, Normanno N, Rocco G, Perrone F, Morabito A (2012) Cetuximab in non-small-cell lung cancer. Expert Rev Anticancer Ther 12(2):163–175

    Article  CAS  PubMed  Google Scholar 

  17. Carcereny E, Moran T, Capdevila L, Cros S, Vila L, de Los Llanos Gil M, Remon J, Rosell R (2015) The epidermal growth factor receptor (EGRF) in lung cancer. Transl Respir Med 3:1–9

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kim EJ, Kim BS, Choi DB, Chi SG, Choi TH (2016) Enhanced tumor retention of radioiodinated anti-epidermal growth factor receptor antibody using novel bifunctional iodination linker for radioimmunotherapy. Oncol Rep 35(6):3159–3168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. de Toledo SM, Azzam EI (2006) Adaptive and bystander responses in human and rodent cell cultures exposed to low level ionizing radiation: the impact of linear energy transfer. Dose Response 4(4):291–301

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chen F, Yin S, Zhu J, Jia L, Zhang H, Yang C, Liu C, Deng Z (2018) Effects of nuclear factorkappaB on the uptake of 131iodine and apoptosis of thyroid carcinoma cells. Mol Med Rep 17(4):4959–4964

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Li GP, Wang YX, Huang K, Zhang H, Zhang CF (2005) Avidin chase reduces side effects of radioimmunotherapy in nude mice bearing human colon carcinoma. World J Gastroenterol 11(13):1917–1921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang YH, Guo Z, An L, Zhou Y, Xu H, Xiong J, Liu ZQ, Chen XP, Zhou HH, Li X, Liu T, Huang WH, Zhang W (2021) LINC-PINT impedes DNA repair and enhances radiotherapeutic response by targeting DNA-PKcs in nasopharyngeal cancer. Cell Death Dis 12(5):454–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Larson SM, Carrasquillo JA, Cheung NK, Press OW (2015) Radioimmunotherapy of human tumours. Nat Rev Cancer 15(6):347–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. de Araujo EB, Caldeira Filho JS, Nagamati LT, Muramoto E, Colturato MT, Couto RM, Pujatti PB, Mengatti J, Silva CP (2009) A comparative study of 131I and 177Lu labeled somatostatin analogues for therapy of neuroendocrine tumours. Appl Radiat Isot 67(2):227–233

    Article  PubMed  Google Scholar 

  25. Strosberg J, El-Haddad G, Wolin E, Hendifar A, Yao J, Chasen B, Mittra E, Kunz PL, Kulke MH, Jacene H, Bushnell D, O’Dorisio TM, Baum RP, Kulkarni HR, Caplin M, Lebtahi R, Hobday T, Delpassand E, Van Cutsem E, Benson A, Srirajaskanthan R, Pavel M, Mora J, Berlin J, Grande E, Reed N, Seregni E, Oberg K, Lopera Sierra M, Santoro P, Thevenet T, Erion JL, Ruszniewski P, Kwekkeboom D, Krenning E, Investigators N-T (2017) Phase 3 trial of 177Lu-Dotatate for Midgut neuroendocrine tumors. N Engl J Med 376(2):125–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hofman MS, Violet J, Hicks RJ, Ferdinandus J, Thang SP, Akhurst T, Iravani A, Kong G, Ravi Kumar A, Murphy DG, Eu P, Jackson P, Scalzo M, Williams SG, Sandhu S (2018) [177Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol 19(6):825–833

    Article  CAS  PubMed  Google Scholar 

  27. Li X, Fu H, Wang J, Liu W, Deng H, Zhao P, Liao W, Yang Y, Wei H, Yang X, Chen Y (2021) Multimodality labeling of NGR-functionalized hyaluronan for tumor targeting and radiotherapy. Eur J Pharm Sci 161:105775–105783

    Article  CAS  PubMed  Google Scholar 

  28. Carmichael J, Degraff WG, Gamson J, Russo D, Gazdar AF, Levitt ML, Minna JD, Mitchell JB (1989) Radiation sensitivity of human lung cancer cell lines. Eur J Cancer Clin Oncol 25(3):527–534

    Article  CAS  PubMed  Google Scholar 

  29. Cao R, Ding Q, Li P, Xue J, Zou Z, Huang J, Peng G (2013) SHP1-mediated cell cycle redistribution inhibits radiosensitivity of non-small cell lung cancer. Radiat Oncol 8:178–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cui J, Wang MC, Zhang YM, Ren MZ, Wang SX, Nan KJ, Song LP (2018) Combination of S-1 and gefitinib increases the sensitivity to radiotherapy in lung cancer cells. Cancer Chemother Pharmacol 81(4):717–726

    Article  CAS  PubMed  Google Scholar 

  31. Hao C, Xu X, Ma J, Xia J, Dai B, Liu L, Ma Y (2017) MicroRNA-124 regulates the radiosensitivity of non-small cell lung cancer cells by targeting TXNRD1. Oncol Lett 13(4):2071–2078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shen Z, Wu X, Wang Z, Li B, Zhu X (2015) Effect of miR-18a overexpression on the radiosensitivity of non-small cell lung cancer. Int J Clin Exp Pathol 8(1):643–648

    PubMed  PubMed Central  Google Scholar 

  33. Moses N, Zhang M, Wu JY, Hu C, Xiang S, Geng X, Chen Y, Bai W, Zhang YW, Bepler G, Zhang XM (2020) HDAC6 regulates radiosensitivity of non-small cell lung cancer by promoting degradation of Chk1. Cells 9(10):2237–2261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Almahi WA, Yu KN, Mohammed F, Kong P, Han W (2022) Hemin enhances radiosensitivity of lung cancer cells through ferroptosis. Exp Cell Res 410(1):112946–112954

    Article  CAS  PubMed  Google Scholar 

  35. Yamaguchi A, Achmad A, Hanaoka H, Heryanto YD, Bhattarai A, Ratianto, Khongorzul E, Shintawati R, Kartamihardja AAP, Kanai A, Sugo Y, N SI, Higuchi T, Tsushima Y (2019) Immuno-PET imaging for non-invasive assessment of cetuximab accumulation in non-small cell lung cancer. BMC Cancer 19(1):1000–1008

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liu Z, Ma T, Liu H, Jin Z, Sun X, Zhao H, Shi J, Jia B, Li F, Wang F (2014) 177Lu-labeled antibodies for EGFR-targeted SPECT/CT imaging and radioimmunotherapy in a preclinical head and neck carcinoma model. Mol Pharm 11(3):800–807

    Article  PubMed  Google Scholar 

  37. Song IH, Lee TS, Park YS, Lee JS, Lee BC, Moon BS, An GI, Lee HW, Kim KI, Lee YJ, Kang JH, Lim SM (2016) Immuno-PET imaging and radioimmunotherapy of 64Cu-/177Lu-Labeled Anti-EGFR antibody in esophageal squamous cell Carcinoma Model. J Nucl Med 57(7):1105–1111

    Article  CAS  PubMed  Google Scholar 

  38. Feng Q, Wang J, Song H, Zhuo L-g, Wang G, Liao W, Feng Y, Wei H, Chen Y, Yang Y, Yang X (2018) Uptake and light-induced cytotoxicity of hyaluronic acid-grafted liposomes containing porphyrin in tumor cells. J Drug Deliv Sci Technol 47:137–143

    Article  CAS  Google Scholar 

  39. Yang Y, Wang J, Liu W, Deng H, Zhao P, Liao W, Wang G, Wei H, Zhuo L, Yang X (2021) 89Zr and 177Lu labeling of anti-DR5 monoclonal antibody for colorectal cancer targeting PET-imaging and radiotherapy. J Radioanal Nucl Chem 330(3):997–1005

    Article  CAS  Google Scholar 

  40. Dadachova E, Chappell LL, Brechbiel MW (1999) Spectrophotometric method for determination of bifunctional macrocyclic ligands in macrocyclic ligand-protein conjugates. Nucl Med Biol 26(8):977–982

    Article  CAS  PubMed  Google Scholar 

  41. Malla RR, Gopinath S, Alapati K, Gorantla B, Gondi CS, Rao JS (2012) uPAR and cathepsin B inhibition enhanced radiation-induced apoptosis in gliomainitiating cells. Neuro Oncol 14(6):745–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhu H, Chen Y, Bai LC, Cao XR, Xu R (2019) Different effects of Melatonin on X-Rays-irradiated cancer cells in a dose-dependent manner. Dose Response 17(3):1559325819877271–1559325819877277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cadet J, Wagner JR (2013) DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. Cold Spring Harb Perspect Biol 5(2):a012559–a012577

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yoshida T, Okamoto I, Okabe T, Iwasa T, Satoh T, Nishio K, Fukuoka M, Nakagawa K (2008) Matuzumab and cetuximab activate the epidermal growth factor receptor but fail to trigger downstream signaling by akt or Erk. Int J Cancer 122(7):1530–1538

    Article  CAS  PubMed  Google Scholar 

  45. Frost SH, Frayo SL, Miller BW, Orozco JJ, Booth GC, Hylarides MD, Lin Y, Green DJ, Gopal AK, Pagel JM, Back TA, Fisher DR, Press OW (2015) Comparative efficacy of 177Lu and 90Y for anti-CD20 pretargeted radioimmunotherapy in murine lymphoma xenograft models. PLoS ONE 10(3):e0120561–e01250577

    Article  PubMed  PubMed Central  Google Scholar 

  46. Dash A, Pillai MR, Knapp FF Jr (2015) Production of (177)Lu for targeted radionuclide therapy: available options. Nucl Med Mol Imag 49(2):85–107

    Article  CAS  Google Scholar 

  47. Kang L, Li C, Rosenkrans ZT, Huo N, Chen Z, Ehlerding EB, Huo Y, Ferreira CA, Barnhart TE, Engle JW, Wang R, Jiang D, Xu X, Cai W (2021) CD38-Targeted theranostics of lymphoma with 89Zr/177Lu-Labeled daratumumab. Adv Sci (Weinh) 8(10):2001879–2001892

    Article  CAS  PubMed  Google Scholar 

  48. Mayer A, Tsiompanou E, Flynn AA, Pedley RB, Dearling J, Boden R, Begent RH (2003) Higher dose and dose-rate in smaller tumors result in improved tumor control. Cancer Invest 21(3):382–388

    Article  CAS  PubMed  Google Scholar 

  49. Ryman JT, Meibohm B (2017) Pharmacokinetics of monoclonal antibodies. CPT Pharmacometrics Syst Pharmacol 6(9):576–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Central Guidance for Local Science and Technology Development Projects (No.202138-03), the National Natural Science Foundation of China (grant no. U20A20384, 21976167 and 22176182), Nuclear Energy Development Project of State Administration of Science, Technology and Industry for National Defense (No. 20201192-1), and CAEP Innovation and Development Foundation (grant no. CX20200003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xia Yang, Hongyuan Wei or Yue Chen.

Ethics declarations

Conflict of interest

The authors declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted. There is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1357.8 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Fan, W., Yan, J. et al. Comparative cytotoxicity of 177Lu on various lung cancer cells and in vivo targeting of 177Lu-labeled cetuximab. J Radioanal Nucl Chem 332, 2093–2102 (2023). https://doi.org/10.1007/s10967-023-08903-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08903-7

Keywords

Navigation