Skip to main content
Log in

Multimodal radiolabeled gold nanoparticle molecular probes: synthesis, imaging, and applications

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Recent years have witnessed increasing advances in gold nanoparticles (GNPs) for accurate and precise diagnosis and therapy. GNPs have great potential in translating into clinical nanomaterial-based products, predominantly attributed to their physicochemical and biological properties. Radiolabeling endows GNPs with high-sensitive imaging capacities in addition to providing potent therapeutic effects, which makes the development of radiolabeling nanotechnology highly desirable. In this review, we briefly describe the physicochemical properties of GNPs and radionuclides, then summarized radiolabeling methods utilized in radiolabeling GNPs, and discuss their whole-body pharmacokinetics and biodistribution. Finally, their current applications in clinical and molecular imaging and therapy are introduced.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Copyright 2019 American Chemical Society

Fig. 4
Fig. 5

Copyright 2016 American Chemical Society

Fig. 6

Copyright 2017 American Chemical Society

Fig. 7

Copyright 2014 American Chemical Society

Fig. 8

Copyright 2014 American Chemical Society

Similar content being viewed by others

References

  1. Zanzonico P (2012) Principles of nuclear medicine imaging: planar, SPECT, PET, multi-modality, and autoradiography systems. Radiat Res 177:349–364. https://doi.org/10.1667/rr2577.1

    Article  CAS  PubMed  Google Scholar 

  2. Hutton BF (2014) The origins of SPECT and SPECT/CT. Eur J Nucl Med Mol Imaging 41(Suppl 1):S3-16. https://doi.org/10.1007/s00259-013-2606-5

    Article  PubMed  Google Scholar 

  3. Goel S, England CG, Chen F, Cai W (2017) Positron emission tomography and nanotechnology: a dynamic duo for cancer theranostics. Adv Drug Deliv Rev 113:157–176. https://doi.org/10.1016/j.addr.2016.08.001

    Article  CAS  PubMed  Google Scholar 

  4. Thiruppathi R, Mishra S, Ganapathy M, Padmanabhan P, Gulyas B (2017) Nanoparticle functionalization and its potentials for molecular imaging. Adv Sci (Weinh) 4:1600279. https://doi.org/10.1002/advs.201600279

    Article  CAS  PubMed  Google Scholar 

  5. Pellico J, Gawne PJ, de Rosales RT (2021) Radiolabelling of nanomaterials for medical imaging and therapy. Chem Soc Rev 50(5):3355–3423

    Article  CAS  PubMed  Google Scholar 

  6. Pratt EC, Shaffer TM, Grimm J (2016) Nanoparticles and radiotracers: advances toward radionanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:872–890. https://doi.org/10.1002/wnan.1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shaffer TM, Pratt EC, Grimm J (2017) Utilizing the power of Cerenkov light with nanotechnology. Nat Nanotechnol 12:106–117. https://doi.org/10.1038/nnano.2016.301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Man F, Gawne PJ, de Rosales RT (2019) Nuclear imaging of liposomal drug delivery systems: a critical review of radiolabelling methods and applications in nanomedicine. Adv Drug Deliv Rev 143:134–160. https://doi.org/10.1016/j.addr.2019.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goddard ZR, Marin MJ, Russell DA, Searcey M (2020) Active targeting of gold nanoparticles as cancer therapeutics. Chem Soc Rev 49:8774–8789. https://doi.org/10.1039/d0cs01121e

    Article  CAS  PubMed  Google Scholar 

  10. Kang H, Buchman JT, Rodriguez RS, Ring HL, He J, Bantz KC, Haynes CL (2019) Stabilization of silver and gold nanoparticles: preservation and improvement of plasmonic functionalities. Chem Rev 119:664–699. https://doi.org/10.1021/acs.chemrev.8b00341

    Article  CAS  PubMed  Google Scholar 

  11. Zhao J, Xue S, Ji R, Li B, Li J (2021) Localized surface plasmon resonance for enhanced electrocatalysis. Chem Soc Rev 50:12070–12097. https://doi.org/10.1039/d1cs00237f

    Article  CAS  PubMed  Google Scholar 

  12. Wilson AJ, Devasia D, Jain PK (2020) Nanoscale optical imaging in chemistry. Chem Soc Rev 49:6087–6112. https://doi.org/10.1039/d0cs00338g

    Article  CAS  Google Scholar 

  13. Liu Y, Bhattarai P, Dai Z, Chen X (2019) Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem Soc Rev 48:2053–2108. https://doi.org/10.1039/c8cs00618k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vigderman L, Khanal BP, Zubarev ER (2012) Functional gold nanorods: synthesis, self-assembly, and sensing applications. Adv Mater 24(4811–4841):5014. https://doi.org/10.1002/adma.201201690

    Article  CAS  PubMed  Google Scholar 

  15. Alkilany AM, Thompson LB, Boulos SP, Sisco PN, Murphy CJ (2012) Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv Drug Deliv Rev 64:190–199. https://doi.org/10.1016/j.addr.2011.03.005

    Article  CAS  PubMed  Google Scholar 

  16. Shanmugam V, Selvakumar S, Yeh CS (2014) Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem Soc Rev 43:6254–6287. https://doi.org/10.1039/c4cs00011k

    Article  CAS  PubMed  Google Scholar 

  17. Meng D, Zheng R, Zhao Y, Zhang E, Dou L, Yang Y (2022) Near-infrared materials: the turning point of organic photovoltaics. Adv Mater 34:e2107330. https://doi.org/10.1002/adma.202107330

    Article  CAS  PubMed  Google Scholar 

  18. Vankayala R, Hwang KC (2018) Near-infrared-light-activatable nanomaterial-mediated phototheranostic nanomedicines: an emerging paradigm for cancer treatment. Adv Mater 30:e1706320. https://doi.org/10.1002/adma.201706320

    Article  CAS  PubMed  Google Scholar 

  19. Zhu S, Tian R, Antaris AL, Chen X, Dai H (2019) Near-infrared-II molecular dyes for cancer imaging and surgery. Adv Mater 31:e1900321. https://doi.org/10.1002/adma.201900321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li B, Lin J, Huang P, Chen X (2022) Near-infrared probes for luminescence lifetime imaging. Nanotheranostics 6:91–102. https://doi.org/10.7150/ntno.63124

    Article  PubMed  PubMed Central  Google Scholar 

  21. Xu C, Pu K (2021) Second near-infrared photothermal materials for combinational nanotheranostics. Chem Soc Rev 50:1111–1137. https://doi.org/10.1039/d0cs00664e

    Article  CAS  PubMed  Google Scholar 

  22. Chen G, Cao Y, Tang Y, Yang X, Liu Y, Huang D, Zhang Y, Li C, Wang Q (2020) Advanced near-infrared light for monitoring and modulating the spatiotemporal dynamics of cell functions in living systems. Adv Sci (Weinh) 7:1903783. https://doi.org/10.1002/advs.201903783

    Article  CAS  PubMed  Google Scholar 

  23. Fang J, Islam W, Maeda H (2020) Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers. Adv Drug Deliv Rev 157:142–160. https://doi.org/10.1016/j.addr.2020.06.005

    Article  CAS  PubMed  Google Scholar 

  24. Nel A, Ruoslahti E, Meng H (2017) New insights into “permeability” as in the enhanced permeability and retention effect of cancer nanotherapeutics. ACS Nano 11:9567–9569. https://doi.org/10.1021/acsnano.7b07214

    Article  CAS  PubMed  Google Scholar 

  25. Izci M, Maksoudian C, Manshian BB, Soenen SJ (2021) The use of alternative strategies for enhanced nanoparticle delivery to solid tumors. Chem Rev 121:1746–1803. https://doi.org/10.1021/acs.chemrev.0c00779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang L, Su H, Wang H, Li Q, Li X, Zhou C, Xu J, Chai Y, Liang X, Xiong L, Zhang C (2019) Tumor chemo-radiotherapy with rod-shaped and spherical gold nano probes: shape and active targeting both matter. Theranostics 9:1893–1908. https://doi.org/10.7150/thno.30523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pretze M, von Kiedrowski V, Runge R, Freudenberg R, Hubner R, Davarci G, Schirrmacher R, Wangler C, Wangler B (2021) alphavbeta3-specific gold nanoparticles for fluorescence imaging of tumor angiogenesis. Nanomaterials (Basel) 11:138. https://doi.org/10.3390/nano11010138

    Article  CAS  PubMed  Google Scholar 

  28. Sun X, Huang X, Yan X, Wang Y, Guo J, Jacobson O, Liu D, Szajek LP, Zhu W, Niu G, Kiesewetter DO, Sun S, Chen X (2014) Chelator-free (64)Cu-integrated gold nanomaterials for positron emission tomography imaging guided photothermal cancer therapy. ACS Nano 8:8438–8446. https://doi.org/10.1021/nn502950t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chakravarty R, Chakraborty S, Guleria A, Kumar C, Kunwar A, Nair KVV, Sarma HD, Dash A (2019) Clinical scale synthesis of intrinsically radiolabeled and cyclic RGD peptide functionalized (198)Au nanoparticles for targeted cancer therapy. Nucl Med Biol 72–73:1–10. https://doi.org/10.1016/j.nucmedbio.2019.05.005

    Article  CAS  PubMed  Google Scholar 

  30. Uhl P, Fricker G, Haberkorn U, Mier W (2015) Radionuclides in drug development. Drug Discov Today 20:198–208. https://doi.org/10.1016/j.drudis.2014.09.027

    Article  CAS  PubMed  Google Scholar 

  31. Papagiannopoulou D (2017) Technetium-99m radiochemistry for pharmaceutical applications. J Labelled Comp Radiopharm 60:502–520. https://doi.org/10.1002/jlcr.3531

    Article  CAS  PubMed  Google Scholar 

  32. Mushtaq S, Bibi A, Park JE, Jeon J (2021) Recent progress in technetium-99m-labeled nanoparticles for molecular imaging and cancer therapy. Nanomaterials (Basel) 11:3022. https://doi.org/10.3390/nano11113022

    Article  CAS  PubMed  Google Scholar 

  33. Eckelman WC (2009) Unparalleled contribution of technetium-99m to medicine over 5 decades. JACC Cardiovasc Imaging 2:364–368. https://doi.org/10.1016/j.jcmg.2008.12.013

    Article  PubMed  Google Scholar 

  34. Hayashi N, Izumi K, Sano F, Miyoshi Y, Uemura H, Kasuya T, Mukai A, Hata M, Inoue T (2015) Ten-year outcomes of I(1)(2)(5) low-dose-rate brachytherapy for clinically localized prostate cancer: a single-institution experience in Japan. World J Urol 33:1519–1526. https://doi.org/10.1007/s00345-015-1480-0

    Article  CAS  PubMed  Google Scholar 

  35. Vaidyanathan G, Zalutsky MR (2019) The radiopharmaceutical chemistry of the radioisotopes of iodine. Radiopharm Chem. https://doi.org/10.1007/978-3-319-98947-1_22

    Article  Google Scholar 

  36. Ferris T, Carroll L, Jenner S, Aboagye EO (2021) Use of radioiodine in nuclear medicine-A brief overview. J Labelled Comp Radiopharm 64:92–108. https://doi.org/10.1002/jlcr.3891

    Article  CAS  PubMed  Google Scholar 

  37. Opacic T, Paefgen V, Lammers T, Kiessling F (2017) Status and trends in the development of clinical diagnostic agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol. https://doi.org/10.1002/wnan.1441

    Article  PubMed  Google Scholar 

  38. Ng QK, Olariu CI, Yaffee M, Taelman VF, Marincek N, Krause T, Meier L, Walter MA (2014) Indium-111 labeled gold nanoparticles for in-vivo molecular targeting. Biomaterials 35:7050–7057. https://doi.org/10.1016/j.biomaterials.2014.04.098

    Article  CAS  PubMed  Google Scholar 

  39. Liu S (2008) Bifunctional coupling agents for radiolabeling of biomolecules and target-specific delivery of metallic radionuclides. Adv Drug Deliv Rev 60:1347–1370. https://doi.org/10.1016/j.addr.2008.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. van der Born D, Pees A, Poot AJ, Orru RVA, Windhorst AD, Vugts DJ (2017) Fluorine-18 labelled building blocks for PET tracer synthesis. Chem Soc Rev 46:4709–4773. https://doi.org/10.1039/c6cs00492j

    Article  CAS  PubMed  Google Scholar 

  41. Deng X, Rong J, Wang L, Vasdev N, Zhang L, Josephson L, Liang SH (2019) Chemistry for positron emission tomography: recent advances in (11) C-, (18) F-, (13) N-, and (15) O-labeling reactions. Angew Chem Int Ed Engl 58:2580–2605. https://doi.org/10.1002/anie.201805501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Klenner MA, Pascali G, Massi M, Fraser BH (2021) Fluorine-18 radiolabelling and photophysical characteristics of multimodal PET-fluorescence molecular probes. Chemistry 27:861–876. https://doi.org/10.1002/chem.202001402

    Article  CAS  PubMed  Google Scholar 

  43. Wang Y, Liu Y, Luehmann H, Xia X, Wan D, Cutler C, Xia Y (2013) Radioluminescent gold nanocages with controlled radioactivity for real-time in vivo imaging. Nano Lett 13:581–585. https://doi.org/10.1021/nl304111v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tosato M, Dalla Tiezza M, May NV, Isse AA, Nardella S, Orian L, Verona M, Vaccarin C, Alker A, Macke H, Pastore P, Di Marco V (2021) Copper coordination chemistry of sulfur pendant cyclen derivatives: an attempt to hinder the reductive-induced demetalation in (64/67)Cu radiopharmaceuticals. Inorg Chem 60:11530–11547. https://doi.org/10.1021/acs.inorgchem.1c01550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hickey JL, Lim S, Hayne DJ, Paterson BM, White JM, Villemagne VL, Roselt P, Binns D, Cullinane C, Jeffery CM, Price RI, Barnham KJ, Donnelly PS (2013) Diagnostic imaging agents for Alzheimer’s disease: copper radiopharmaceuticals that target Abeta plaques. J Am Chem Soc 135:16120–16132. https://doi.org/10.1021/ja4057807

    Article  CAS  PubMed  Google Scholar 

  46. Follacchio AG, De Feo SM, De Vincentis G, Monteleone F, Liberatore M (2018) Radiopharmaceuticals labelled with copper radionuclides: clinical results in human beings. Curr Radiopharm 11:22–33. https://doi.org/10.2174/1874471011666171211161851

    Article  CAS  PubMed  Google Scholar 

  47. Chen K, Cui M (2017) Recent progress in the development of metal complexes as beta-amyloid imaging probes in the brain. Medchemcomm 8:1393–1407. https://doi.org/10.1039/c7md00064b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chakravarty R, Chakraborty S, Dash A (2016) (64)Cu(2+) ions as PET probe: an emerging paradigm in molecular imaging of cancer. Mol Pharm 13:3601–3612. https://doi.org/10.1021/acs.molpharmaceut.6b00582

    Article  CAS  PubMed  Google Scholar 

  49. Gutfilen B, Souza SA, Valentini G (2018) Copper-64: a real theranostic agent. Drug Des Devel Ther 12:3235–3245. https://doi.org/10.2147/DDDT.S170879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Silva WM, Ribeiro H, Taha-Tijerina JJ (2021) Potential production of theranostic boron nitride nanotubes ((64)Cu-BNNTs) radiolabeled by neutron capture. Nanomaterials (Basel) 11:2907. https://doi.org/10.3390/nano11112907

    Article  CAS  PubMed  Google Scholar 

  51. Boschi A, Martini P, Janevik-Ivanovska E, Duatti A (2018) The emerging role of copper-64 radiopharmaceuticals as cancer theranostics. Drug Discov Today 23:1489–1501. https://doi.org/10.1016/j.drudis.2018.04.002

    Article  CAS  PubMed  Google Scholar 

  52. Samim A, Tytgat GAM, Bleeker G, Wenker STM, Chatalic KLS, Poot AJ, Tolboom N, van Noesel MM, Lam M, de Keizer B (2021) Nuclear medicine imaging in neuroblastoma: current status and new developments. J Pers Med 11:2907. https://doi.org/10.3390/jpm11040270

    Article  Google Scholar 

  53. Alves F, Alves VH, Neves ACB, Carmo SJCd, Nactergal B, Hellas V, Kral E, Gonçalves-Gameiro C, Abrunhosa AJ (2017) Cyclotron production of Ga-68 for human use from liquid targets: from theory to practice. AIP Conf Proc 1845:020001. https://doi.org/10.1063/1.4983532

    Article  Google Scholar 

  54. Brandt M, Cardinale J, Aulsebrook ML, Gasser G, Mindt TL (2018) An overview of PET radiochemistry, Part 2: radiometals. J Nucl Med 59:1500–1506. https://doi.org/10.2967/jnumed.117.190801

    Article  CAS  PubMed  Google Scholar 

  55. Perera M, Papa N, Roberts M, Williams M, Udovicich C, Vela I, Christidis D, Bolton D, Hofman MS, Lawrentschuk N, Murphy DG (2020) Gallium-68 prostate-specific membrane antigen positron emission tomography in advanced prostate cancer-updated diagnostic utility, sensitivity, specificity, and distribution of prostate-specific membrane antigen-avid lesions: a systematic review and meta-analysis. Eur Urol 77:403–417. https://doi.org/10.1016/j.eururo.2019.01.049

    Article  PubMed  Google Scholar 

  56. Virgolini I, Ambrosini V, Bomanji JB, Baum RP, Fanti S, Gabriel M, Papathanasiou ND, Pepe G, Oyen W, De Cristoforo C, Chiti A (2010) Procedure guidelines for PET/CT tumour imaging with 68Ga-DOTA-conjugated peptides: 68Ga-DOTA-TOC, 68Ga-DOTA-NOC, 68Ga-DOTA-TATE. Eur J Nucl Med Mol Imaging 37:2004–2010. https://doi.org/10.1007/s00259-010-1512-3

    Article  PubMed  Google Scholar 

  57. Bhatt NB, Pandya DN, Wadas TJ (2018) Recent advances in Zirconium-89 chelator development. Molecules 23:638. https://doi.org/10.3390/molecules23030638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fischer G, Seibold U, Schirrmacher R, Wängler B, Wängler C (2013) 89Zr, a radiometal nuclide with high potential for molecular imaging with PET: chemistry, applications and remaining challenges. Molecules 18:6469–6490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kumar K, Ghosh A (2021) Radiochemistry, production processes, labeling methods, and immuno PET imaging pharmaceuticals of Iodine-124. Molecules 26:414. https://doi.org/10.3390/molecules26020414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Aboian MS, Huang SY, Hernandez-Pampaloni M, Hawkins RA, VanBrocklin HF, Huh Y, Vo KT, Gustafson WC, Matthay KK, Seo Y (2021) (124)I-MIBG PET/CT to monitor metastatic disease in children with relapsed neuroblastoma. J Nucl Med 62:43–47. https://doi.org/10.2967/jnumed.120.243139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cascini GL, Niccoli Asabella A, Notaristefano A, Restuccia A, Ferrari C, Rubini D, Altini C, Rubini G (2014) 124 Iodine: a longer-life positron emitter isotope-new opportunities in molecular imaging. Biomed Res Int 2014:672094. https://doi.org/10.1155/2014/672094

    Article  PubMed  PubMed Central  Google Scholar 

  62. Pei P, Liu T, Shen W, Liu Z, Yang K (2021) Biomaterial-mediated internal radioisotope therapy. Mater Horiz 8:1348–1366. https://doi.org/10.1039/d0mh01761b

    Article  CAS  PubMed  Google Scholar 

  63. Hosseini SF, Sadeghi M, Aboudzadeh MR, Mohseni M (2016) Production and modeling of radioactive gold nanoparticles in Tehran research reactor. Appl Radiat Isot 118:361–365. https://doi.org/10.1016/j.apradiso.2016.10.004

    Article  CAS  PubMed  Google Scholar 

  64. Al-Yasiri AY, Khoobchandani M, Cutler CS, Watkinson L, Carmack T, Smith CJ, Kuchuk M, Loyalka SK, Lugao AB, Katti KV (2017) Mangiferin functionalized radioactive gold nanoparticles (MGF-(198)AuNPs) in prostate tumor therapy: green nanotechnology for production, in vivo tumor retention and evaluation of therapeutic efficacy. Dalton Trans 46:14561–14571. https://doi.org/10.1039/c7dt00383h

    Article  CAS  PubMed  Google Scholar 

  65. Xuan S, de Barros A, Nunes RC, Ricci-Junior E, da Silva AX, Sahid M, Alencar LMR, Dos Santos CC, Morandi V, Alexis F, Iram SH, Santos-Oliveira R (2020) Radioactive gold nanocluster (198-AuNCs) showed inhibitory effects on cancer cells lines. Artif Cells Nanomed Biotechnol 48:1214–1221. https://doi.org/10.1080/21691401.2020.1821698

    Article  CAS  PubMed  Google Scholar 

  66. Rambanapasi C, Barnard N, Grobler A, Buntting H, Sonopo M, Jansen D, Jordaan A, Steyn H, Zeevaart JR (2015) Dual radiolabeling as a technique to track nanocarriers: the case of gold nanoparticles. Molecules 20:12863–12879. https://doi.org/10.3390/molecules200712863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ge J, Zhang Q, Zeng J, Gu Z, Gao M (2020) Radiolabeling nanomaterials for multimodality imaging: new insights into nuclear medicine and cancer diagnosis. Biomaterials 228:119553. https://doi.org/10.1016/j.biomaterials.2019.119553

    Article  CAS  PubMed  Google Scholar 

  68. Wang Y, Liu Y, Luehmann H, Xia X, Brown P, Jarreau C, Welch M, Xia Y (2012) Evaluating the pharmacokinetics and in vivo cancer targeting capability of Au nanocages by positron emission tomography imaging. ACS Nano 6:5880–5888. https://doi.org/10.1021/nn300464r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cheng K, Kothapalli SR, Liu H, Koh AL, Jokerst JV, Jiang H, Yang M, Li J, Levi J, Wu JC, Gambhir SS, Cheng Z (2014) Construction and validation of nano gold tripods for molecular imaging of living subjects. J Am Chem Soc 136:3560–3571. https://doi.org/10.1021/ja412001e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yang M, Cheng K, Qi S, Liu H, Jiang Y, Jiang H, Li J, Chen K, Zhang H, Cheng Z (2013) Affibody modified and radiolabeled gold-iron oxide hetero-nanostructures for tumor PET, optical and MR imaging. Biomaterials 34:2796–2806. https://doi.org/10.1016/j.biomaterials.2013.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Frigell J, Garcia I, Gomez-Vallejo V, Llop J, Penades S (2014) 68Ga-labeled gold glyconanoparticles for exploring blood-brain barrier permeability: preparation, biodistribution studies, and improved brain uptake via neuropeptide conjugation. J Am Chem Soc 136:449–457. https://doi.org/10.1021/ja411096m

    Article  CAS  PubMed  Google Scholar 

  72. Kreyling WG, Abdelmonem AM, Ali Z, Alves F, Geiser M, Haberl N, Hartmann R, Hirn S, de Aberasturi DJ, Kantner K, Khadem-Saba G, Montenegro J-M, Rejman J, Rojo T, de Larramendi IR, Ufartes R, Wenk A, Parak WJ (2015) In vivo integrity of polymer-coated gold nanoparticles. Nat Nanotechnol 10:619–623. https://doi.org/10.1038/nnano.2015.111

    Article  CAS  PubMed  Google Scholar 

  73. Li X, Xiong Z, Xu X, Luo Y, Peng C, Shen M, Shi X (2016) 99mTc-labeled multifunctional low-generation dendrimer-entrapped gold nanoparticles for targeted SPECT/CT dual-mode imaging of tumors. ACS Appl Mater Interfaces 8:19883–19891. https://doi.org/10.1021/acsami.6b04827

    Article  CAS  PubMed  Google Scholar 

  74. Zhu J, Chin J, Wangler C, Wangler B, Lennox RB, Schirrmacher R (2014) Rapid (18)F-labeling and loading of PEGylated gold nanoparticles for in vivo applications. Bioconjug Chem 25:1143–1150. https://doi.org/10.1021/bc5001593

    Article  CAS  PubMed  Google Scholar 

  75. Kamal R, Chadha VD, Dhawan DK (2018) Physiological uptake and retention of radiolabeled resveratrol loaded gold nanoparticles ((99m)Tc-Res-AuNP) in colon cancer tissue. Nanomedicine 14:1059–1071. https://doi.org/10.1016/j.nano.2018.01.008

    Article  CAS  PubMed  Google Scholar 

  76. Zhang Y, Zhang Y, Yin L, Xia X, Hu F, Liu Q, Qin C, Lan X (2017) Synthesis and Bioevaluation of Iodine-131 directly labeled cyclic RGD-PEGylated gold nanorods for tumor-targeted imaging. Contrast Media Mol Imaging 2017:6081724. https://doi.org/10.1155/2017/6081724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hu H, Huang P, Weiss OJ, Yan X, Yue X, Zhang MG, Tang Y, Nie L, Ma Y, Niu G, Wu K, Chen X (2014) PET and NIR optical imaging using self-illuminating (64)Cu-doped chelator-free gold nanoclusters. Biomaterials 35:9868–9876. https://doi.org/10.1016/j.biomaterials.2014.08.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chakravarty R, Chakraborty S, Guleria A, Shukla R, Kumar C, Vimalnath Nair KV, Sarma HD, Tyagi AK, Dash A (2018) Facile one-pot synthesis of intrinsically radiolabeled and cyclic RGD conjugated 199Au nanoparticles for potential use in nanoscale brachytherapy. Ind Eng Chem Res 57:14337–14346. https://doi.org/10.1021/acs.iecr.8b02526

    Article  CAS  Google Scholar 

  79. Lee SB, Lee SW, Jeong SY, Yoon G, Cho SJ, Kim SK, Lee IK, Ahn BC, Lee J, Jeon YH (2017) Engineering of radioiodine-labeled gold core-shell nanoparticles as efficient nuclear medicine imaging agents for trafficking of dendritic cells. ACS Appl Mater Interfaces 9:8480–8489. https://doi.org/10.1021/acsami.6b14800

    Article  CAS  PubMed  Google Scholar 

  80. Lee SB, Ahn SB, Lee S-W, Jeong SY, Ghilsuk Y, Ahn B-C, Kim E-M, Jeong H-J, Lee J, Lim D-K, Jeon YH (2016) Radionuclide-embedded gold nanoparticles for enhanced dendritic cell-based cancer immunotherapy, sensitive and quantitative tracking of dendritic cells with PET and Cerenkov luminescence. NPG Asia Mater 8:e281–e281. https://doi.org/10.1038/am.2016.80

    Article  CAS  Google Scholar 

  81. Ranjbar Bahadori S, Mulgaonkar A, Hart R, Wu CY, Zhang D, Pillai A, Hao Y, Sun X (2021) Radiolabeling strategies and pharmacokinetic studies for metal based nanotheranostics. Wiley Interdiscip Rev Nanomed Nanobiotechnol 13:e1671. https://doi.org/10.1002/wnan.1671

    Article  CAS  PubMed  Google Scholar 

  82. Lattuada L, Barge A, Cravotto G, Giovenzana GB, Tei L (2011) The synthesis and application of polyamino polycarboxylic bifunctional chelating agents. Chem Soc Rev 40:3019–3049. https://doi.org/10.1039/c0cs00199f

    Article  CAS  PubMed  Google Scholar 

  83. Pant K, Sedlacek O, Nadar RA, Hruby M, Stephan H (2017) Radiolabelled polymeric materials for imaging and treatment of cancer: Quo vadis? Adv Healthc Mater 6:1601115. https://doi.org/10.1002/adhm.201601115

    Article  CAS  Google Scholar 

  84. Enrique MA, Mariana OR, Mirshojaei SF, Ahmadi A (2015) Multifunctional radiolabeled nanoparticles: strategies and novel classification of radiopharmaceuticals for cancer treatment. J Drug Target 23:191–201. https://doi.org/10.3109/1061186X.2014.988216

    Article  CAS  PubMed  Google Scholar 

  85. White CA, Akbari A, Allen C, Day AG, Norman PA, Holland D, Adams MA, Knoll GA (2021) Simultaneous glomerular filtration rate determination using inulin, iohexol, and (99m)Tc-DTPA demonstrates the need for customized measurement protocols. Kidney Int 99:957–966. https://doi.org/10.1016/j.kint.2020.06.044

    Article  CAS  PubMed  Google Scholar 

  86. Boros E, Cawthray JF, Ferreira CL, Patrick BO, Adam MJ, Orvig C (2012) Evaluation of the H2)dedpa scaffold and its cRGDyK conjugates for labeling with 64Cu. Inorg Chem 51:6279–6284. https://doi.org/10.1021/ic300482x

    Article  CAS  PubMed  Google Scholar 

  87. Rischpler C, Beck TI, Okamoto S, Schlitter AM, Knorr K, Schwaiger M, Gschwend J, Maurer T, Meyer PT, Eiber M (2018) (68)Ga-PSMA-HBED-CC uptake in cervical, celiac, and sacral ganglia as an important pitfall in prostate cancer PET imaging. J Nucl Med 59:1406–1411. https://doi.org/10.2967/jnumed.117.204677

    Article  CAS  PubMed  Google Scholar 

  88. Price EW, Orvig C (2014) Matching chelators to radiometals for radiopharmaceuticals. Chem Soc Rev 43:260–290. https://doi.org/10.1039/c3cs60304k

    Article  CAS  PubMed  Google Scholar 

  89. Kostelnik TI, Orvig C (2019) Radioactive main group and rare earth metals for imaging and therapy. Chem Rev 119:902–956. https://doi.org/10.1021/acs.chemrev.8b00294

    Article  CAS  PubMed  Google Scholar 

  90. Guerrero S, Herance JR, Rojas S, Mena JF, Gispert JD, Acosta GA, Albericio F, Kogan MJ (2012) Synthesis and in vivo evaluation of the biodistribution of a 18F-labeled conjugate gold-nanoparticle-peptide with potential biomedical application. Bioconjug Chem 23:399–408. https://doi.org/10.1021/bc200362a

    Article  CAS  PubMed  Google Scholar 

  91. Steen EJL, Edem PE, Norregaard K, Jorgensen JT, Shalgunov V, Kjaer A, Herth MM (2018) Pretargeting in nuclear imaging and radionuclide therapy: improving efficacy of theranostics and nanomedicines. Biomaterials 179:209–245. https://doi.org/10.1016/j.biomaterials.2018.06.021

    Article  CAS  PubMed  Google Scholar 

  92. Kumar K (2022) Radioiodine labeling reagents and methods for new chemical entities and biomolecules. Cancer Biother Radiopharm 37:173–185. https://doi.org/10.1089/cbr.2021.0233

    Article  CAS  PubMed  Google Scholar 

  93. Agarwal A, Shao X, Rajian JR, Zhang H, Chamberland DL, Kotov NA, Wang X (2011) Dual-mode imaging with radiolabeled gold nanorods. J Biomed Opt 16:051307. https://doi.org/10.1117/1.3580277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sun X, Cai W, Chen X (2015) Positron emission tomography imaging using radiolabeled inorganic nanomaterials. Acc Chem Res 48:286–294. https://doi.org/10.1021/ar500362y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Liu TW, MacDonald TD, Shi J, Wilson BC, Zheng G (2012) Intrinsically copper-64-labeled organic nanoparticles as radiotracers. Angew Chem Int Ed Engl 51:13128–13131. https://doi.org/10.1002/anie.201206939

    Article  CAS  PubMed  Google Scholar 

  96. Goel S, Chen F, Ehlerding EB, Cai W (2014) Intrinsically radiolabeled nanoparticles: an emerging paradigm. Small 10:3825–3830. https://doi.org/10.1002/smll.201401048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhao Y, Sultan D, Detering L, Luehmann H, Liu Y (2014) Facile synthesis, pharmacokinetic and systemic clearance evaluation, and positron emission tomography cancer imaging of (6)(4)Cu-Au alloy nanoclusters. Nanoscale 6:13501–13509. https://doi.org/10.1039/c4nr04569f

    Article  CAS  PubMed  Google Scholar 

  98. Zhao Y, Sultan D, Detering L, Cho S, Sun G, Pierce R, Wooley KL, Liu Y (2014) Copper-64-alloyed gold nanoparticles for cancer imaging: improved radiolabel stability and diagnostic accuracy. Angew Chem Int Ed Engl 53:156–159. https://doi.org/10.1002/anie.201308494

    Article  CAS  PubMed  Google Scholar 

  99. Pretze M, van der Meulen NP, Wangler C, Schibli R, Wangler B (2019) Targeted (64) Cu-labeled gold nanoparticles for dual imaging with positron emission tomography and optical imaging. J Labelled Comp Radiopharm 62:471–482. https://doi.org/10.1002/jlcr.3736

    Article  CAS  PubMed  Google Scholar 

  100. Frellsen AF, Hansen AE, Jolck RI, Kempen PJ, Severin GW, Rasmussen PH, Kjaer A, Jensen AT, Andresen TL (2016) Mouse Positron emission tomography study of the biodistribution of gold nanoparticles with different surface coatings using embedded Copper-64. ACS Nano 10:9887–9898. https://doi.org/10.1021/acsnano.6b03144

    Article  CAS  PubMed  Google Scholar 

  101. Iram F, Iqbal MS, Khan IU, Rasheed R, Khalid A, Khalid M, Aftab S, Shakoori AR (2020) Synthesis and biodistribution study of biocompatible 198Au nanoparticles by use of arabinoxylan as reducing and stabilizing agent. Biol Trace Elem Res 193:282–293. https://doi.org/10.1007/s12011-019-01700-y

    Article  CAS  PubMed  Google Scholar 

  102. Souza B, Ribeiro E, Silva de Barros AO, Pijeira MSO, Kenup-Hernandes HO, Ricci-Junior E, Diniz Filho JFS, Dos Santos CC, Alencar LMR, Attia MF, Gemini-Piperni S, Santos-Oliveira R (2022) Nanomicelles of radium dichloride [(223)Ra]RaCl(2) Co-loaded with radioactive gold [(198)Au]Au nanoparticles for targeted alpha-beta radionuclide therapy of osteosarcoma. Polymers (Basel) 14(7):1405. https://doi.org/10.3390/polym14071405

    Article  CAS  PubMed  Google Scholar 

  103. Zhao Y, Pang B, Luehmann H, Detering L, Yang X, Sultan D, Harpstrite S, Sharma V, Cutler CS, Xia Y, Liu Y (2016) Gold nanoparticles doped with (199) Au atoms and their use for targeted cancer imaging by SPECT. Adv Healthc Mater 5:928–935. https://doi.org/10.1002/adhm.201500992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bourquin J, Milosevic A, Hauser D, Lehner R, Blank F, Petri-Fink A, Rothen-Rutishauser B (2018) Biodistribution, clearance, and long-term fate of clinically relevant nanomaterials. Adv Mater 30:e1704307. https://doi.org/10.1002/adma.201704307

    Article  CAS  PubMed  Google Scholar 

  105. Weber C, Morsbach S, Landfester K (2019) Possibilities and limitations of different separation techniques for the analysis of the protein corona. Angew Chem Int Ed Engl 58:12787–12794. https://doi.org/10.1002/anie.201902323

    Article  CAS  PubMed  Google Scholar 

  106. Cai R, Chen C (2019) the crown and the scepter: roles of the protein corona in nanomedicine. Adv Mater 31:1805740. https://doi.org/10.1002/adma.201805740

    Article  CAS  Google Scholar 

  107. Madathiparambil Visalakshan R, Gonzalez Garcia LE, Benzigar MR, Ghazaryan A, Simon J, Mierczynska-Vasilev A, Michl TD, Vinu A, Mailander V, Morsbach S, Landfester K, Vasilev K (2020) The influence of nanoparticle shape on protein corona formation. Small 16:e2000285. https://doi.org/10.1002/smll.202000285

    Article  CAS  PubMed  Google Scholar 

  108. Bewersdorff T, Glitscher EA, Bergueiro J, Eravci M, Miceli E, Haase A, Calderon M (2020) The influence of shape and charge on protein corona composition in common gold nanostructures. Mater Sci Eng C Mater Biol Appl 117:111270. https://doi.org/10.1016/j.msec.2020.111270

    Article  CAS  PubMed  Google Scholar 

  109. Pelaz B, del Pino P, Maffre P, Hartmann R, Gallego M, Rivera-Fernandez S, de la Fuente JM, Nienhaus GU, Parak WJ (2015) Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake. ACS Nano 9:6996–7008. https://doi.org/10.1021/acsnano.5b01326

    Article  CAS  PubMed  Google Scholar 

  110. Donahue ND, Acar H, Wilhelm S (2019) Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv Drug Deliv Rev 143:68–96. https://doi.org/10.1016/j.addr.2019.04.008

    Article  CAS  PubMed  Google Scholar 

  111. Clogston JD (2021) The importance of nanoparticle physicochemical characterization for immunology research: what we learned and what we still need to understand. Adv Drug Deliv Rev 176:113897. https://doi.org/10.1016/j.addr.2021.113897

    Article  CAS  PubMed  Google Scholar 

  112. Agarwal R, Singh V, Jurney P, Shi L, Sreenivasan SV, Roy K (2013) Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms. Proc Natl Acad Sci 110:17247–17252. https://doi.org/10.1073/pnas.1305000110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ding L, Yao C, Yin X, Li C, Huang Y, Wu M, Wang B, Guo X, Wang Y, Wu M (2018) Size, shape, and protein corona determine cellular uptake and removal mechanisms of gold nanoparticles. Small 14:e1801451. https://doi.org/10.1002/smll.201801451

    Article  CAS  PubMed  Google Scholar 

  114. Gong L, He K, Liu J (2021) Concentration-dependent subcellular distribution of ultrasmall near-infrared-emitting gold nanoparticles. Angew Chem Int Ed Engl 60:5739–5743. https://doi.org/10.1002/anie.202014833

    Article  CAS  PubMed  Google Scholar 

  115. Choo P, Liu T, Odom TW (2021) Nanoparticle shape determines dynamics of targeting nanoconstructs on cell membranes. J Am Chem Soc 143:4550–4555. https://doi.org/10.1021/jacs.1c00850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Akiyama Y, Mori T, Katayama Y, Niidome T (2012) Conversion of rod-shaped gold nanoparticles to spherical forms and their effect on biodistribution in tumor-bearing mice. Nanoscale Res Lett 7:565. https://doi.org/10.1186/1556-276X-7-565

    Article  PubMed  PubMed Central  Google Scholar 

  117. Black KC, Wang Y, Luehmann HP, Cai X, Xing W, Pang B, Zhao Y, Cutler CS, Wang LV, Liu Y, Xia Y (2014) Radioactive 198Au-doped nanostructures with different shapes for in vivo analyses of their biodistribution, tumor uptake, and intratumoral distribution. ACS Nano 8:4385–4394. https://doi.org/10.1021/nn406258m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yu M, Xu J, Zheng J (2019) Renal clearable luminescent gold nanoparticles: from the bench to the clinic. Angew Chem Int Ed Engl 58:4112–4128. https://doi.org/10.1002/anie.201807847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Du B, Jiang X, Das A, Zhou Q, Yu M, Jin R, Zheng J (2017) Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime. Nat Nanotechnol 12:1096–1102. https://doi.org/10.1038/nnano.2017.170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhang B, Chen J, Cao Y, Chai OJH, Xie J (2021) Ligand design in ligand-protected gold nanoclusters. Small 17:e2004381. https://doi.org/10.1002/smll.202004381

    Article  CAS  PubMed  Google Scholar 

  121. Zheng B, Wu Q, Jiang Y, Hou M, Zhang P, Liu M, Zhang L, Li B, Zhang C (2021) One-pot synthesis of (68)Ga-doped ultrasmall gold nanoclusters for PET/CT imaging of tumors. Mater Sci Eng C Mater Biol Appl 128:112291. https://doi.org/10.1016/j.msec.2021.112291

    Article  CAS  PubMed  Google Scholar 

  122. Lee SB, Kumar D, Li Y, Lee IK, Cho SJ, Kim SK, Lee SW, Jeong SY, Lee J, Jeon YH (2018) PEGylated crushed gold shell-radiolabeled core nanoballs for in vivo tumor imaging with dual positron emission tomography and Cerenkov luminescent imaging. J Nanobiotechnol 16:41. https://doi.org/10.1186/s12951-018-0366-x

    Article  CAS  Google Scholar 

  123. Pratt EC, Shaffer TM, Zhang Q, Drain CM, Grimm J (2018) Nanoparticles as multimodal photon transducers of ionizing radiation. Nat Nanotechnol 13:418–426. https://doi.org/10.1038/s41565-018-0086-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Das S, Thorek DL, Grimm J (2014) Cerenkov imaging. Adv Cancer Res 124:213–234. https://doi.org/10.1016/B978-0-12-411638-2.00006-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhang Q, Pratt EC, Tamura R, Ogirala A, Hsu HT, Farahmand N, O’Brien S, Grimm J (2021) Ultrasmall downconverting nanoparticle for enhanced cerenkov imaging. Nano Lett 21:4217–4224. https://doi.org/10.1021/acs.nanolett.1c00049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Thorek D, Robertson R, Bacchus WA, Hahn J, Rothberg J, Beattie BJ, Grimm J (2012) Cerenkov imaging - a new modality for molecular imaging. Am J Nucl Med Mol Imaging 2:163–173

    PubMed  PubMed Central  Google Scholar 

  127. Genovese D, Petrizza L, Prodi L, Rampazzo E, De Sanctis F, Spinelli AE, Boschi F, Zaccheroni N (2020) Tandem dye-doped nanoparticles for NIR imaging via cerenkov resonance energy transfer. Front Chem 8:71. https://doi.org/10.3389/fchem.2020.00071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Guo J, Feng K, Wu W, Ruan Y, Liu H, Han X, Shao G, Sun X (2021) Smart (131) I-labeled self-illuminating photosensitizers for deep tumor therapy. Angew Chem Int Ed Engl 60:21884–21889. https://doi.org/10.1002/anie.202107231

    Article  CAS  PubMed  Google Scholar 

  129. Heuvel JO, van der Poel HG, van Leeuwen PJ, Bekers EM, Grootendorst MR, Vyas KN, Slump CH, Stokkel MP (2022) Cerenkov luminescence imaging in prostate cancer: not the only light that shines. J Nucl Med 63(1):29–35. https://doi.org/10.2967/jnumed.120.260034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhao Y, Shaffer TM, Das S, Perez-Medina C, Mulder WJ, Grimm J (2017) Near-infrared quantum dot and (89)Zr dual-labeled nanoparticles for in vivo cerenkov imaging. Bioconjug Chem 28:600–608. https://doi.org/10.1021/acs.bioconjchem.6b00687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kotagiri N, Sudlow GP, Akers WJ, Achilefu S (2015) Breaking the depth dependency of phototherapy with Cerenkov radiation and low-radiance-responsive nanophotosensitizers. Nat Nanotechnol 10:370–379. https://doi.org/10.1038/nnano.2015.17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lee SB, Yoon G, Lee SW, Jeong SY, Ahn BC, Lim DK, Lee J, Jeon YH (2016) Combined positron emission tomography and cerenkov luminescence imaging of sentinel lymph nodes using PEGylated radionuclide-embedded gold nanoparticles. Small 12:4894–4901. https://doi.org/10.1002/smll.201601721

    Article  CAS  PubMed  Google Scholar 

  133. Spinelli AE, D’Ambrosio D, Calderan L, Marengo M, Sbarbati A, Boschi F (2010) Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers. Phys Med Biol 55:483–495. https://doi.org/10.1088/0031-9155/55/2/010

    Article  PubMed  Google Scholar 

  134. Robertson R, Germanos MS, Li C, Mitchell GS, Cherry SR, Silva MD (2009) Optical imaging of Cerenkov light generation from positron-emitting radiotracers. Phys Med Biol 54:N355-365. https://doi.org/10.1088/0031-9155/54/16/N01

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Black KC, Ibricevic A, Gunsten SP, Flores JA, Gustafson TP, Raymond JE, Samarajeewa S, Shrestha R, Felder SE, Cai T, Shen Y, Lobs AK, Zhegalova N, Sultan DH, Berezin M, Wooley KL, Liu Y, Brody SL (2016) In vivo fate tracking of degradable nanoparticles for lung gene transfer using PET and Cerenkov imaging. Biomaterials 98:53–63. https://doi.org/10.1016/j.biomaterials.2016.04.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Thorek DL, Riedl CC, Grimm J (2014) Clinical Cerenkov luminescence imaging of (18)F-FDG. J Nucl Med 55:95–98. https://doi.org/10.2967/jnumed.113.127266

    Article  CAS  PubMed  Google Scholar 

  137. Fu Q, Zhu R, Song J, Yang H, Chen X (2019) Photoacoustic imaging: contrast agents and their biomedical applications. Adv Mater 31:e1805875. https://doi.org/10.1002/adma.201805875

    Article  CAS  PubMed  Google Scholar 

  138. Moore C, Chen F, Wang J, Jokerst JV (2019) Listening for the therapeutic window: advances in drug delivery utilizing photoacoustic imaging. Adv Drug Deliv Rev 144:78–89. https://doi.org/10.1016/j.addr.2019.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Jiang Y, Pu K (2017) Advanced photoacoustic imaging applications of near-infrared absorbing organic nanoparticles. Small 13:1700710. https://doi.org/10.1002/smll.201700710

    Article  CAS  Google Scholar 

  140. Du J, Yang S, Qiao Y, Lu H, Dong H (2021) Recent progress in near-infrared photoacoustic imaging. Biosens Bioelectron 191:113478. https://doi.org/10.1016/j.bios.2021.113478

    Article  CAS  PubMed  Google Scholar 

  141. Xu C, Chen F, Valdovinos HF, Jiang D, Goel S, Yu B, Sun H, Barnhart TE, Moon JJ, Cai W (2018) Bacteria-like mesoporous silica-coated gold nanorods for positron emission tomography and photoacoustic imaging-guided chemo-photothermal combined therapy. Biomaterials 165:56–65. https://doi.org/10.1016/j.biomaterials.2018.02.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Huang Q, Zhang S, Zhang H, Han Y, Liu H, Ren F, Sun Q, Li Z, Gao M (2019) Boosting the radiosensitizing and photothermal performance of Cu2- xse nanocrystals for synergetic radiophotothermal therapy of orthotopic breast cancer. ACS Nano 13:1342–1353. https://doi.org/10.1021/acsnano.8b06795

    Article  CAS  PubMed  Google Scholar 

  143. Lusic H, Grinstaff MW (2013) X-ray-computed tomography contrast agents. Chem Rev 113:1641–1666. https://doi.org/10.1021/cr200358s

    Article  CAS  PubMed  Google Scholar 

  144. Liu Y, Ai K, Lu L (2012) Nanoparticulate X-ray computed tomography contrast agents: from design validation to in vivo applications. Acc Chem Res 45:1817–1827. https://doi.org/10.1021/ar300150c

    Article  CAS  PubMed  Google Scholar 

  145. Jakhmola A, Anton N, Vandamme TF (2012) Inorganic nanoparticles based contrast agents for X-ray computed tomography. Adv Healthc Mater 1:413–431. https://doi.org/10.1002/adhm.201200032

    Article  CAS  PubMed  Google Scholar 

  146. Li X, Wang C, Tan H, Cheng L, Liu G, Yang Y, Zhao Y, Zhang Y, Li Y, Zhang C, Xiu Y, Cheng D, Shi H (2016) Gold nanoparticles-based SPECT/CT imaging probe targeting for vulnerable atherosclerosis plaques. Biomaterials 108:71–80. https://doi.org/10.1016/j.biomaterials.2016.08.048

    Article  CAS  PubMed  Google Scholar 

  147. Simon M, Jorgensen JT, Melander F, Andresen TL, Christensen A, Kjaer A (2021) Photothermal therapy as adjuvant to surgery in an orthotopic mouse model of human fibrosarcoma. Cancers (Basel) 13:5820. https://doi.org/10.3390/cancers13225820

    Article  PubMed  Google Scholar 

  148. Lee HP, Gaharwar AK (2020) Light-responsive inorganic biomaterials for biomedical applications. Adv Sci (Weinh) 7:2000863. https://doi.org/10.1002/advs.202000863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Lee SB, Lee JE, Cho SJ, Chin J, Kim SK, Lee IK, Lee SW, Lee J, Jeon YH (2019) Crushed gold shell nanoparticles labeled with radioactive iodine as a theranostic nanoplatform for macrophage-mediated photothermal therapy. Nanomicro Lett 11:36. https://doi.org/10.1007/s40820-019-0266-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Cheng D, Gong J, Wang P, Zhu J, Yu N, Zhao J, Zhang Q, Li J (2021) (131)I-Labeled gold nanoframeworks for radiotherapy-combined second near-infrared photothermal therapy of cancer. J Mater Chem B 9:9316–9323. https://doi.org/10.1039/d1tb02115j

    Article  CAS  PubMed  Google Scholar 

  151. Pulagam KR, Henriksen-Lacey M, Uribe B, Renero-Lecuna C, Kumar J, Charalampopoulou A, Facoetti A, Protti N, Gomez-Vallejo V, Baz Z, Kumar V, Sanchez-Iglesias A, Altieri S, Cossio U, Di Silvio D, Martinez-Villacorta AM, Ruiz de Angulo A, Rejc L, Liz-Marzan LM, Llop J (2021) In vivo evaluation of multifunctional gold nanorods for boron neutron capture and photothermal therapies. ACS Appl Mater Interfaces 13:49589–49601. https://doi.org/10.1021/acsami.0c17575

    Article  CAS  PubMed  Google Scholar 

  152. Axiak-Bechtel SM, Upendran A, Lattimer JC, Kelsey J, Cutler CS, Selting KA, Bryan JN, Henry CJ, Boote E, Tate DJ, Bryan ME, Katti KV, Kannan R (2014) Gum arabic-coated radioactive gold nanoparticles cause no short-term local or systemic toxicity in the clinically relevant canine model of prostate cancer. Int J Nanomed 9:5001–5011. https://doi.org/10.2147/IJN.S67333

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to this work is supported by the General project of Wuxi Municipal Health Commission (M202230) and the Open Program of NHC Key Laboratory of Nuclear Medicine and Jiangsu Key Laboratory of Molecular Nuclear Medicine (KF201905).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Chen.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Q., Chen, F. Multimodal radiolabeled gold nanoparticle molecular probes: synthesis, imaging, and applications. J Radioanal Nucl Chem 332, 1625–1645 (2023). https://doi.org/10.1007/s10967-023-08895-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08895-4

Keywords

Navigation