Skip to main content
Log in

Structure and aggregation behavior of pertechnetate/perrhenate in organic phase in the extraction by tributyl phosphate

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The extraction of pertechnetate (TcO4) and perrhenate (ReO4) by tributyl phosphate (TBP) has been extensively studied, but the structure of the extracted species is subject to debate. In this work, the extraction behavior of TcO4 and ReO4 from both HNO3 and HCl media by TBP in n-dodecane was studied by examining the effects of acid concentration, extractant concentration, and temperature on the extraction. The two anions displayed similar extraction behavior in both the HNO3 and HCl systems, where the distribution ratio of TcO4 was slightly higher than that of ReO4. The measurement of water content in the organic phase and dynamic light scattering were carried out, which in combination with the extraction behavior indicated that ReO4 was extracted as [H+ReO4(H2O)8·(TBP)4] and formed microemulsions in the organic phase. Theoretical calculations were performed on the structure of both [H+ReO4(H2O)8·(TBP)4] and [H+TcO4(H2O)8·(TBP)4]. The TBP molecules interacted with the [H+ReO4(H2O)8] and [H+TcO4(H2O)8] clusters through hydrogen bonding between H2O and the O=P groups, i.e., ReO4 and TcO4 underwent outer-sphere coordination with TBP in the organic phase. Results in this work provide valuable insights into the structures of ReO4 and TcO4 extracted into the organic phase by TBP, and also assist in the analysis of TcO4 species in the PUREX process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. George K, Masters AJ, Livens FR, Sarsfield MJ, Taylor RJ, Sharrad CA (2022) A review of technetium and zirconium extraction into tributyl phosphate in the PUREX process. Hydrometallurgy. https://doi.org/10.1016/j.hydromet.2022.105892

    Article  Google Scholar 

  2. Budantseva N, Andreev G, Fedoseev A (2017) Structural role of isonicotinic acid in U(VI), Np(VI), and Pu(VI) complexes with TcO4, ReO4, and ClO4 Ions. Inorg Chem 56:12199–12205. https://doi.org/10.1021/acs.inorgchem.7b01611

    Article  CAS  PubMed  Google Scholar 

  3. Puzikov EA, Zilberman BY, Fedorov YS, Blazheva IV, Krinitsyn AP, Sytnik LV, Ryabkov DV, Goletskii ND (2015) Interaction of zirconium with pertechnetic acid in the course of extraction from nitric acid solutions with tributyl phosphate in diluent in the presence of uranyl nitrate at various temperatures and its mathematical description. Radiochemistry 57:273–284. https://doi.org/10.1134/s106636221503008x

    Article  CAS  Google Scholar 

  4. Akopov GA, Krinitsyn AP, Tsarenko AF (1990) Extraction of pertechnetate anion as a ligand in a cerium(IV) tributyl-phosphate complex. J Radioanal Nucl Chem 140:349–356. https://doi.org/10.1007/bf02039507

    Article  CAS  Google Scholar 

  5. Kolarik Z, Dressler P (1989) Extraction and coextraction of Tc(VII), Zr(IV), Np(IV, VI), Pa(V) and Nb(V) with tributyl-phosphate from nitric-acid solutions. Solvent Extr Ion Exch 7:625–644. https://doi.org/10.1080/07360298908962328

    Article  CAS  Google Scholar 

  6. Kanellakopulos B, Neck V, Kim JI (1989) Preferential solvation of single ions and the TBP-extraction behavior of acids, UO2(TcO4)2 and UO2(NO3)2. Radiochim Acta 48:159–163. https://doi.org/10.1524/ract.1989.48.34.159

    Article  CAS  Google Scholar 

  7. Garraway J, Wilson PD (1985) Coextraction of pertechnetate and zirconium by tri-normal-butyl phosphate. J Less-Common Metals 106:183–192. https://doi.org/10.1016/0022-5088(85)90379-0

    Article  CAS  Google Scholar 

  8. Jassim TN, Liljenzin JO, Lundqvist R, Persson G (1984) Coextraction of uranium and technetium in TBP-systems. Solvent Extr Ion Exch 2:405–419. https://doi.org/10.1080/07366298408918455

    Article  CAS  Google Scholar 

  9. Jassim TN, Liljenzin JO, Persson G (1983) Synergistic effect of uranyl-nitrate on the extraction of pertechnetic and perrhenic acids by TBP solutions from nitric-acid. Radiochim Acta 33:163–167. https://doi.org/10.1524/ract.1983.33.23.163

    Article  CAS  Google Scholar 

  10. Macasek F (1975) Co-extraction of technetium with uranyl-nitrate tributylphosphate complex. Radiochem Radioanal Lett 22:175–183

    CAS  Google Scholar 

  11. Chen J, Tomasberger T (2001) Solvent extraction of Tc(VII) by the mixture of TBP and 2-nitrophenyl octyl ether. J Radioanal Nucl Chem 247:519–523. https://doi.org/10.1023/a:1010622208450

    Article  CAS  Google Scholar 

  12. Takeuchi M, Tanaka S, Yamawaki M (1997) Temperature effect on technetium(VII) extraction by CMPO and TBP. J Nucl Mater 247:203–207. https://doi.org/10.1016/s0022-3115(97)00046-9

    Article  CAS  Google Scholar 

  13. El-Kot AM (1992) Solvent-extraction of heptavalent technetium. J Radioanal Nucl Chem 163:363–373. https://doi.org/10.1007/bf02034810

    Article  CAS  Google Scholar 

  14. Lieser KH, Singh RN (1983) Numerical equations for the extraction of Tc(VII) by tri-normal-butyl-phosphate (TBP). Radiochim Acta 32:203–206. https://doi.org/10.1524/ract.1983.32.4.203

    Article  CAS  Google Scholar 

  15. Kanellakopulos B, Konig CP (1983) On the extraction behavior of technetium with respect to the PUREX process. Radiochim Acta 33:169–175. https://doi.org/10.1524/ract.1983.33.23.169

    Article  CAS  Google Scholar 

  16. Pruett DJ (1981) The solvent extraction behavior of technetium part II. The hydrochloric acid-tri-n-butyl phosphate system. Radiochim Acta 29:107–111. https://doi.org/10.1524/ract.1981.29.23.107

    Article  CAS  Google Scholar 

  17. Pruett DJ (1981) The solvent extraction of heptavalent technetium by tributyl phosphate. Sep Sci Technol 16:1157–1179. https://doi.org/10.1080/01496398108057605

    Article  CAS  Google Scholar 

  18. Pruett DJ (1981) The solvent extraction behavior of technetium part I. The nitric acid-tri-rt-butyl phosphate system. Radiochim Acta 28:153–157. https://doi.org/10.1524/ract.1981.28.3.153

    Article  CAS  Google Scholar 

  19. Lieser KH, KrÜGer A, Singh RN (1981) Extraction of Tc(VII) by tri-n-butyl phosphate. Radiochim Acta 28:97–101. https://doi.org/10.1524/ract.1981.28.2.97

    Article  CAS  Google Scholar 

  20. Macáŝek F, Kadrabová J (1979) Extraction of pertechnetate anion as a ligand in metal complexes with tributylphosphate. J Radioanal Nucl Chem 51:97–106. https://doi.org/10.1007/bf02519927

    Article  Google Scholar 

  21. Campbell MH (1963) Separation of technetium from mixed fission products by solvent extraction with tributyl phosphate. Anal Chem 35:2052–2054. https://doi.org/10.1021/ac60206a023

    Article  CAS  Google Scholar 

  22. Cheema HA, Ilyas S, Masud S, Muhsan MA, Mahmood I, Lee J-c (2018) Selective recovery of rhenium from molybdenite flue-dust leach liquor using solvent extraction with TBP. Sep Purif Technol 191:116–121. https://doi.org/10.1016/j.seppur.2017.09.021

    Article  CAS  Google Scholar 

  23. Nguyen THT, Thanh H, Lee MS (2017) Separation of rhenium(VII) and vanadium(V) from hydrochloric acid solutions by solvent extraction. Korean J Metals Mater 55:724–731. https://doi.org/10.3365/kjmm.2017.55.10.724

    Article  CAS  Google Scholar 

  24. Khoshnevisan A, Yoozbashizadeh H, Mohammadi M, Abazarpoor A, Maarefvand M (2013) Separation of rhenium and molybdenum from molybdenite leach liquor by the solvent extraction method. Miner Metall Process 30:53–58. https://doi.org/10.1007/bf03402341

    Article  CAS  Google Scholar 

  25. Xiong Y, Lou ZN, Yue SA, Song JJ, Shan WJ, Han GX (2010) Kinetics and mechanism of Re(VII) extraction with mixtures of tri-alkylamine and tri-n-butylphosphate. Hydrometallurgy 100:110–115. https://doi.org/10.1016/j.hydromet.2009.10.014

    Article  CAS  Google Scholar 

  26. Sadrnezhaad SK, Alamdari EK (2001) Thermodynamics of extraction of ReO4- from aqueous sulfuric acid media with tri-n-butyl phosphate dissolved in kerosene. Metall Mater Trans B-Process Metall Mater Process Sci 32:5–10. https://doi.org/10.1007/s11663-001-0001-2

    Article  Google Scholar 

  27. Sato T, Sato K (1990) Liquid-liquid-extraction of rhenium(VII) from hydrochloric-acid solutions by neutral organophosphorus compounds and high-molecular-weight amines. Hydrometallurgy 25:281–291. https://doi.org/10.1016/0304-386x(90)90044-3

    Article  CAS  Google Scholar 

  28. Pruett DJ, McTaggart DR (1981) The solvent-extraction behavior of rhenium.1. The nitric acid-tributyl phosphate system. J Inorg Nucl Chem 43:2109–2112. https://doi.org/10.1016/0022-1902(81)80559-3

    Article  CAS  Google Scholar 

  29. Bucher JJ, Diamond RM (1969) Extraction of perchloric and perrhenic acids by dilute solutions of tributyl phosphate in carbon tetrachloride, isooctane, and 1,2-dichloroethane. J Phys Chem 73:675–683. https://doi.org/10.1021/j100723a032

    Article  CAS  Google Scholar 

  30. Liu BB, Zhang B, Han GH, Wang MM, Huang YF, Su SP, Xue YB, Wang YZ (2022) Clean separation and purification for strategic metals of molybdenum and rhenium from minerals and waste alloy scraps—a review. Resour Conserv Recycl. https://doi.org/10.1016/j.resconrec.2022.106232

    Article  Google Scholar 

  31. Anderson CD, Taylor PR, Anderson CG (2013) Extractive metallurgy of rhenium: a review. Miner Metall Process 30:59–73. https://doi.org/10.1007/bf03402342

    Article  CAS  Google Scholar 

  32. Hardy CJ, Fairhurst D, McKay HAC, Willson AM (1964) Extraction of water by tri-n-butyl phosphate. Trans Faraday Soc 60:1626–1636. https://doi.org/10.1039/tf9646001626

    Article  CAS  Google Scholar 

  33. Bullock E, Tuck DG (1963) Interaction of tri-n-butyl phosphate with water. Trans Faraday Soc 59:1293–1298. https://doi.org/10.1039/TF9635901293

    Article  CAS  Google Scholar 

  34. Chaiko DJ, Vandegrift GF (1988) A thermodynamic model of nitric acid extraction by tri-n-butyl phosphate. Nucl Technol 82:52–59. https://doi.org/10.13182/nt88-a34116

    Article  CAS  Google Scholar 

  35. Naito K, Suzuki T (1962) The mechanism of the extraction of several proton acids by tri-n-butyl phosphate. J Phys Chem 66:983–988. https://doi.org/10.1021/j100812a005

    Article  CAS  Google Scholar 

  36. Srivastava RR, Lee J-c, Kim M-s (2015) Complexation chemistry in liquid-liquid extraction of rhenium. J Chem Technol Biotechnol 90:1752–1764. https://doi.org/10.1002/jctb.4707

    Article  CAS  Google Scholar 

  37. Mu J, Motokawa R, Akutsu K, Nishitsuji S, Masters AJ (2018) A novel microemulsion phase transition: toward the elucidation of third-phase formation in spent nuclear fuel reprocessing. J Phys Chem B 122:1439–1452. https://doi.org/10.1021/acs.jpcb.7b08515

    Article  CAS  PubMed  Google Scholar 

  38. Chiarizia R, Briand A, Jensen MP, Thiyagarajan P (2008) Sans study of reverse micelles formed upon the extraction of inorganic acids by TBP in n-octane. Solvent Extr Ion Exch 26:333–359. https://doi.org/10.1080/07366290802182394

    Article  CAS  Google Scholar 

  39. Chiarizia R, Briand A (2007) Third phase formation in the extraction of inorganic acids by TBP inn-octane. Solvent Extr Ion Exch 25:351–371. https://doi.org/10.1080/07366290701285397

    Article  CAS  Google Scholar 

  40. Chiarizia R, Rickert PG, Stepinski D, Thiyagarajan P, Littrell KC (2006) SANS study of third phase formation in the HCl-TBP-n-octane system. Solvent Extr Ion Exch 24:125–148. https://doi.org/10.1080/07366290500464300

    Article  CAS  Google Scholar 

  41. Jiang J, Li W, Gao H, Wu J (2003) Extraction of inorganic acids with neutral phosphorus extractants based on a reverse micelle/microemulsion mechanism. J Colloid Interface Sci 268:208–214. https://doi.org/10.1016/j.jcis.2003.08.045

    Article  CAS  PubMed  Google Scholar 

  42. Osseo-Asare K (1991) Aggregation, reversed micelles, and microemulsions in liquid-liquid extraction: the tri-n-butyl phosphatediluent-water-electrolyte system. Adv Colloid Interface Sci 37:123–173. https://doi.org/10.1016/0001-8686(91)80041-h

    Article  CAS  Google Scholar 

  43. Osseo-Asare K (1990) Volume changes and distribution of HCl and H2O in the tri-n-butyl phosphate-H2O–HCl liquid–liquid system: a reversed micellar phenomenological model. Colloids Surf 50:373–392. https://doi.org/10.1016/0166-6622(90)80277-b

    Article  CAS  Google Scholar 

  44. Chen X, Zhao Y-F, Zhang Y-Y, Li J (2019) TGMin: an efficient global minimum searching program for free and surface-supported clusters. J Comput Chem 40:1105–1112. https://doi.org/10.1002/jcc.25649

    Article  CAS  PubMed  Google Scholar 

  45. Chen X, Zhao Y-F, Wang L-S, Li J (2017) Recent progresses of global minimum searches of nanoclusters with a constrained Basin-Hopping algorithm in the TGMin program. Comput Theor Chem 1107:57–65. https://doi.org/10.1016/j.comptc.2016.12.028

    Article  CAS  Google Scholar 

  46. Bannwarth C, Ehlert S, Grimme S (2019) GFN2-xTB-an accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. J Chem Theory Comput 15:1652–1671. https://doi.org/10.1021/acs.jctc.8b01176

    Article  CAS  PubMed  Google Scholar 

  47. Faas S, Snijders JG, Vanlenthe JH, Vanlenthe E, Baerends EJ (1995) The ZORA formalism applied to the Dirac–Fock equation. Chem Phys Lett 246:632–640. https://doi.org/10.1016/0009-2614(95)01156-0

    Article  CAS  Google Scholar 

  48. te Velde G, Bickelhaupt FM, Baerends EJ, Guerra CF, Van Gisbergen SJA, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22:931–967. https://doi.org/10.1002/jcc.1056

    Article  Google Scholar 

  49. Baerends EJ, Ziegler T, Autschbach J, Bashford D, Bérces A, Bickelhaupt FM, Bo C, Boerrigter PM, Cavallo L, Chong DP, Deng L, Dickson RM, Ellis DE, van Faassen M, Fan L, Fischer TH, Fonseca Guerra C, Franchini M, Ghysels A, Giammona A, van Gisbergen SJA, Götz AW, Groeneveld JA, Gritsenko OV, Grüning M, Gusarov S, Harris FE, van den Hoek P, Jacob CR, Jacobsen H, Jensen L, Kaminski JW, van Kessel G, Kootstra F, Kovalenko A, Krykunov MV, van Lenthe E, McCormack DA, Michalak A, Mitoraj M, Morton SM, Neugebauer J, Nicu VP, Noodleman L, Osinga VP, Patchkovskii S, Pavanello M, Philipsen PHT, Post D, Pye CC, Ravenek W, Rodríguez JI, Ros P, Schipper PRT, van Schoot H, Schreckenbach G, Seldenthuis JS, Seth M, Snijders JG, Solà M, Swart M, Swerhone D, te Velde G, Vernooijs P, Versluis L, Visscher L, Visser O, Wang F, Wesolowski TA, van Wezenbeek EM, Wiesenekker G, Wolff SK, Woo TK, Yakovlev AL (2019) SCM, theoretical chemistry. Vrije Universiteit, Amsterdam

    Google Scholar 

  50. Harned HS, Brumbaugh NJ (1922) The activity coefficient of hydrochloric acid in aqueous salt solutions. J Am Chem Soc 44:2729–2748. https://doi.org/10.1021/ja01433a008

    Article  CAS  Google Scholar 

  51. Kislik VS (2012) Solvent extraction: classical and novel approaches. Elsevier, Amsterdam

    Google Scholar 

  52. Maheshwary S, Patel N, Sathyamurthy N, Kulkarni AD, Gadre SR (2001) Structure and stability of water clusters (H2O)(n), n = 8-20: an ab initio investigation. J Phys Chem A 105:10525–10537. https://doi.org/10.1021/jp013141b

    Article  CAS  Google Scholar 

  53. Lee HM, Suh SB, Lee JY, Tarakeshwar P, Kim KS (2000) Structures, energies, vibrational spectra, and electronic properties of water monomer to decamer. J Chem Phys 112:9759–9772. https://doi.org/10.1063/1.481613

    Article  CAS  Google Scholar 

  54. Sadlej J, Buch V, Kazimirski JK, Buck U (1999) Theoretical study of structure and spectra of cage clusters (H2O)(n), n = 7-10. J Phys Chem A 103:4933–4947. https://doi.org/10.1021/jp990546b

    Article  CAS  Google Scholar 

  55. Wales DJ, Hodges MP (1998) Global minima of water clusters (H2O)(n), n <= 21, described by an empirical potential. Chem Phys Lett 286:65–72. https://doi.org/10.1016/s0009-2614(98)00065-7

    Article  CAS  Google Scholar 

  56. Buck U, Ettischer I, Melzer M, Buch V, Sadlej J (1998) Structure and spectra of three-dimensional (H2O)(n) clusters, n = 8, 9, 10. Phys Rev Lett 80:2578–2581. https://doi.org/10.1103/PhysRevLett.80.2578

    Article  CAS  Google Scholar 

  57. Schurhammer R, Wipff G (2011) Liquid-liquid extraction of pertechnetic add (Tc-VII) by tri-n-butyl phosphate: where is the proton? A molecular dynamics investigation. J Phys Chem B 115:2338–2348. https://doi.org/10.1021/jp111758s

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by National Natural Science Foundation of China (21976103 and U1830202).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Xu or Taoxiang Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Zhang, Y., Chen, Z. et al. Structure and aggregation behavior of pertechnetate/perrhenate in organic phase in the extraction by tributyl phosphate. J Radioanal Nucl Chem 332, 1723–1732 (2023). https://doi.org/10.1007/s10967-023-08885-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08885-6

Keywords

Navigation