Skip to main content
Log in

A non-aqueous phase extraction system using tributyl phosphate for H3PO4 separation from wet-process superphosphoric acid: Extraction equilibrium and mechanism

  • Review Paper
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Conventional wet-process phosphoric acid (WPA) extraction route encounters unsatisfactory extraction efficiency, phosphorus yield, and raffinate utilization. Herein, a new extraction route for H3PO4 separation from wet-process superphosphoric acid (WSPA) is proposed to improve these dilemmas. We focus on the equilibrium of H3PO4 extraction by tributyl phosphate (TBP) from WSPA and the extraction mechanism of TBP under high H3PO4 loading conditions. Several critical factors affecting the extraction equilibrium were investigated to optimize the extraction process, including the initial phase ratio (R0), the volume fraction of TBP in extradant (φTBP), temperature (T), and the crosscurrent extraction stages. The results show that the single-stage extraction rate of H3PO4 reaches 70% at R0=6, φTBP=80% and T=80oC with separation factors βP/Fe, βP/Al, βP/Mg, and βP/Ca of 12.48, 21.66, 47.57, and 8.89, respectively. In addition, Fourier transform infrared spectroscopy and Raman spectroscopy enlighten the extraction mechanism at high loading conditions. The characteristic peak positions of P=O, P=O⋯H2O, and P=O⋯H3PO4 in the infrared spectra are determined to be centered at 1,283, 1,267, and 1,233 cm−1, respectively. The semi-quantitative analysis implies that the self-polymerization behavior of the extraction complex TBP·H3PO4 and the mutual attraction of reverse micelles (RMs) through their polar cores is the trigger for the formation of a third phase. Furthermore, the red shift of P-(OH)3 asymmetrical stretching vibration in the Raman spectrum indicates the formation of hydrogen bonds among H3PO4 molecules in the organic phase, which corroborates the formation of RMs. Conclusions can be obtained that H3PO4 enters the organic phase under high loading capacity by reversed micellar extraction. The feasibility of this extraction process is further tested by scrubbing, stripping, and cycling performance experiments. The results are promising for the design of a new efficient route for separating H3PO4 from WPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

peak area

C:

concentration of component i [mol/L]

C:

constant

D:

distribution ratio

Ei :

extraction rate of component i

FWHH:

full width of half height

g:

gravitational acceleration [9.80 m/s2]

∆H:

molar enthalpy of reaction [kJ/mol]

h:

heavy phase

k:

mole ratio of H3PO4 to TBP

l:

light phase

LRP:

H3PO4 loading ratio of TBP

m:

mass [kg]

M:

moles per litre

[i]:

concentration of component I [mol/L]

n:

mole number

q(i):

mass flow rate of component I [kg/s]

R:

universal gas constant [J/(mol·K)]

R:

volumetric phase ratio of organic phase to inorganic phase [Vorg/Vino]

R0 :

initial volumetric phase ratio of organic phase to inorganic phase before extraction or stripping [Vorg/Vino]

Re :

volumetric phase ratio Vorg/Vino at extraction equilibrium

Re:

removal rate

T:

temperature [oC]

V:

volume [m3]

w(i):

mass fraction of component i

Xc :

peak position

Xn :

the mass ratio of H3PO4 to TBP in organic phase at the nth stage

Xf :

the mass ratio of H3PO4 to TBP in feed loading organic phase

Y0 :

the mass ratio of H3PO4 to H2O in feed aqueous phase

Yn+1 :

the mass ratio of H3PO4 to H2O in aqueous phase at the stage (n+1)

β i/f :

separation factor of component i towards component j

γ :

out-of-plane bending vibration

δ :

scissoring vibration

ρ :

rocking vibration

φ i :

volume fraction of component i

v :

stretching vibration

aq:

aqueous solution

as:

asymmetrical vibration

f:

feed state

tl:

total liquid collected at the end by stripping

ino:

inorganic phase

org:

organic phase

r:

raffinate phase

s:

symmetrical vibration

References

  1. Z. Chen, Y. Ding, B. Long, F. Deng, P. Liu, G. Xiao and Q. Zhang, Chem. Bioeng. (Wuhan, China), 32, 63 (2015).

    Google Scholar 

  2. S. Meles and M. V. Prostenik, Polyhedron, 3, 615 (1984).

    Article  CAS  Google Scholar 

  3. Y. Jin, Y. J. Ma, Y. L. Weng, X. H. Jia and J. Li, J. Ind. Eng. Chem., 20, 3446 (2014).

    Article  CAS  Google Scholar 

  4. M. I. El-Khaiary, Sep. Purif. Technol., 12, 13 (1997).

    Article  CAS  Google Scholar 

  5. J. Yu and D. J. Liu, Chem. Eng. Res. Des., 88, 712 (2010).

    Article  CAS  Google Scholar 

  6. M. Hmamou, B. Ammary, A. Bellaouchou and A. El hammadi, Mater. Today Proc., 24, 1 (2020).

    Article  CAS  Google Scholar 

  7. G. Li, Hubei Xingfa Chemical Industry Group Co., T. C. I. R Institute, Phosphoric acid for industry use, GB/T 2091-2008, China National Standardization Administration Committee.

  8. M. I. Amin, M. M. Ali, H. M. Kamal, A. M. Youssef and M. A. Akl, Hydrometallurgy, 105, 115 (2010).

    Article  CAS  Google Scholar 

  9. M. C. Assuncao, G. Cote, M. Andre, H. Halleux and A. Chagnes, RSC Adv., 7, 6922 (2017).

    Article  CAS  Google Scholar 

  10. M. Feki, Chem. Eng. J., 88, 71 (2002).

    Article  CAS  Google Scholar 

  11. S. J. Zhang, Y. X. Chen, T. Zhang, L. Lv, D. Y. Zheng, B. H. Zhong and S. W. Tang, Sep. Purif. Technol., 249, 117 (2020).

    Article  CAS  Google Scholar 

  12. H. Chen, Z. Sun, X. Song and J. Yu, J. Chem. Eng. Data, 61, 438 (2015).

    Article  CAS  Google Scholar 

  13. M. Chen, J. Li, Y. Jin, J. H. Luo, X. H. Zhu and D. F. Yu, J. Chem. Technol. Biot., 93, 467 (2018).

    Article  CAS  Google Scholar 

  14. D. Liu, S. Jiang, H. Luo and Y. Zhang, Phosphate Compd. Fert, 20, 6 (2005).

    CAS  Google Scholar 

  15. L. Yang, C. Tang, Z. Y. Zhang and X. L. Wang, Chinese Patent, CN106145075A (2016).

  16. J. X. Yang, X. J. Kong, D. H. Xu, W. J. Xie and X. L. Wang, Chem. Eng. J., 359, 1453 (2019).

    Article  CAS  Google Scholar 

  17. K. E. Mcgill and O. S. Kerns, Nutr. Cycl. Agroecosyst., 25, 179 (1990).

    CAS  Google Scholar 

  18. C. E. Breed, K. E. Mcgill and M. T. Holt, J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., 21, 609 (1986).

    Article  Google Scholar 

  19. M. Y. Huang, K. Yang, J. Li and B. H. Zhong, Phosphate. Compd. Fert., 19, 9 (2004).

    CAS  Google Scholar 

  20. B. H. Zhong J. Li and L. Chen, Hsien Tai Hua Kung, 25, 48 (2005).

    CAS  Google Scholar 

  21. Y. Jin, D. Zou, S. Wu, Y. Cao and J. Li, Ind. Eng. Chem. Res., 54, 108 (2014).

    Article  CAS  Google Scholar 

  22. C. Wei, B. Hu, Y. Li, S. Wang, H. Wuf and J. Pu, Phosphate. Compd. Fert., 33, 28 (2018).

    Google Scholar 

  23. Z. Luo, B. Zeng, K. Luo and B. Wang, Ind. Miner. Process., 43, 60 (2014).

    CAS  Google Scholar 

  24. L. Yang, Phosphate. Compd. Fert., 35, 19 (2020).

    Google Scholar 

  25. R. Dhouib-Sahnoun, M. Fekif and H. F. Ayedi, J. Chem. Eng. Data, 47, 861 (2002).

    Article  CAS  Google Scholar 

  26. Y. Jin, J. Li, J. Luo, D. S. Zheng and L. Liu, J. Chem. Eng. Data, 55, 3196 (2010).

    Article  CAS  Google Scholar 

  27. C. Liu, J. Cao, W. Shen, Y. Ren, W. Mu and X. Ding, Fluid Phase Equilib., 408, 190 (2016).

    Article  CAS  Google Scholar 

  28. K. Ziat, B. Mesnaoui, T. Bounahmidi, R. Boussen, M. Guardia and S. Garrigues, Fluid Phase Equilib., 201, 259 (2002).

    Article  CAS  Google Scholar 

  29. C. Q. Liu, Y. Ren and Y. N. Wang, J. Chem. Eng. Data, 59, 70 (2013).

    Article  CAS  Google Scholar 

  30. Y. Ren, C. Q. Liu, J. Cao, W. Mu and X. Ding, J. Chem. Eng. Data, 61, 1735 (2016).

    Article  CAS  Google Scholar 

  31. K. Ziat, B. Messnaoui, T. Bounahmidi and M. Guardia, Fluid Phase Equilib., 224, 39 (2004).

    Article  CAS  Google Scholar 

  32. D. S. Zheng, J. Li, K. Zhou, J. H. Luof and Y. Jin, J. Chem. Eng. Data, 55, 58 (2010).

    Article  CAS  Google Scholar 

  33. S. Kouzbour, B. Gourich, F. Gros, C. Vial, F. Allam and Y. Stiriba, Hydrometallurgy, 188, 222 (2019).

    Article  CAS  Google Scholar 

  34. F. Xun, Z. Yan and H. S. Zheng, Solvent. Extr. Ion. Exch., 20, 241 (2002).

    Article  Google Scholar 

  35. P. H. Tedesco and V. B. Rumi, Polyhedron, 42, 1033 (1980).

    CAS  Google Scholar 

  36. C. E. Higgins and W. H. Baldwin, Polyhedron, 24, 415 (1962).

    CAS  Google Scholar 

  37. S. Nave, C. Mandin, L. Martinet, L. Berthon, F. Testard, C. Madic and T. Zemb, ACS Phys. Chem. Au., 6, 799 (2004).

    CAS  Google Scholar 

  38. X. T. Yi, G. S. Huo and W. Tang, Hydrometallurgy, 192, 105265 (2020).

    Article  CAS  Google Scholar 

  39. X. K. Zhou, Z. F. Zhang, S. T. Kuang, Y. L. Li, Y. Q. Ma, Y. H. Li and W. P. Liao, Hydrometallurgy, 185, 76 (2019).

    Article  CAS  Google Scholar 

  40. R. K. Mishra, P. C. Rout, K. Sarangi and K. C. Nathsarma, Hydrometallurgy, 104, 298 (2010).

    Article  CAS  Google Scholar 

  41. L. Cui, L. Wang, M. Feng, L. Fang, Y. Guo and F. Cheng, Green Energy Environ., 6, 607 (2020).

    Article  Google Scholar 

  42. Y. Zhao, C. Xing, C. Shao, G. Chen, S. Sun, G. Chen, L. Zhang, J. Pei, P. Qiu and S. Guo, Fuel (Lond), 278, 118229 (2020).

    Article  CAS  Google Scholar 

  43. W. W. Rudolph, Dalton Trans, 39, 9642 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was financially supported by National Key R&D Program of China (2016YFD0200404).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Yang.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

11814_2021_1021_MOESM1_ESM.pdf

A non-aqueous phase extraction system using tributyl phosphate for H3PO4 separation from wet-process superphosphoric acid: Extraction equilibrium and mechanism

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Yang, J., Yang, X. et al. A non-aqueous phase extraction system using tributyl phosphate for H3PO4 separation from wet-process superphosphoric acid: Extraction equilibrium and mechanism. Korean J. Chem. Eng. 39, 1659–1672 (2022). https://doi.org/10.1007/s11814-021-1021-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-1021-z

Keywords

Navigation