Skip to main content
Log in

Diglycolamic acid coated cation exchange adsorbent for uranium removal by extraction chromatography

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This paper highlights the development of an extraction chromatography-based recovery of uranium using a diglycolamic acid-coated polymeric resin from low-concentration uranium- bearing solutions. Factors controlling uranium separation have been examined as a function of the pH of the aqueous medium, interfering ions, uranium concentration in the aqueous phase, duration of contact of the resin with the aqueous phase, etc. The adsorption kinetics and isotherm models are modeled with the pseudo-first and the pseudo-second-order adsorption kinetics. The outcome of the batch and column-based adsorption studies corroborates the prospect of using diglycolamic acid-coated polymeric resin to separate uranium from low-concentration feeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Repo M, Warchoł JK, Bhatnagar A, Mudhoo A, Sillanpä M (2013) Aminopolycarboxylic acid functionalized adsorbents for heavy metals removal from water. Water Res 47:4812–4832. https://doi.org/10.1016/j.watres.2013.06.020

    Article  CAS  PubMed  Google Scholar 

  2. Yuan Y, Wu Y, Wang H, Tong Y, Sheng X, Sun Y, Zhou X, Zhou Q (2020) Simultaneous enrichment and determination of cadmium and mercury ions using magnetic PAMAM dendrimers as the adsorbents for magnetic solid phase extraction coupled with high performance liquid chromatography. J Hazard Mater 386:121658. https://doi.org/10.1016/j.jhazmat.2019.121658

    Article  CAS  PubMed  Google Scholar 

  3. Huck CW, Bonn GK (2000) Recent developments in polymer-based sorbents for solid-phase extraction. J Chromatogr A 885:51–72. https://doi.org/10.1016/j.jhazmat.2019.121658

    Article  CAS  PubMed  Google Scholar 

  4. Shu Q, Khayambashi A, Wang X, Wei X (2018) Studies on adsorption of rare earth elements from nitric acid solution with macroporous silica-based bis (2-ethylhexyl) phosphoric acid impregnated polymeric adsorbent. Adsorp Sci Technol 36:1049–1065. https://doi.org/10.1177/0263617417748

    Article  CAS  Google Scholar 

  5. Yao L, Zhang N, Wang C, Wang C (2015) Highly selective separation and purification of anthocyanins from bilberry based on a macroporous polymeric adsorbent. J Agric Food Chem 63:3543–3550. https://doi.org/10.1021/jf506107m

    Article  CAS  PubMed  Google Scholar 

  6. Khayambashi A, Wang X, Wei Y (2016) Solid phase extraction of uranium (VI) from phosphoric acid medium using macroporous silica-based D2EHPA-TOPO impregnated polymeric adsorbent. Hydrometallurgy 164:90–96. https://doi.org/10.1016/j.hydromet.2016.05.013

    Article  CAS  Google Scholar 

  7. Warshawsky A (1997) Solvent impregnated resins. In: Marinsky JA, Marcus Y (eds) Ion Exchange and solvent extraction: a series of advances. CRC Press, Boka Raton, pp 195–232

    Google Scholar 

  8. Kabay N, Cortina JL, Trochimczuk A, Streat M (2010) Solvent-impregnated resins (SIRs)–methods of preparation and their applications. React Funct Polym 70:484–496. https://doi.org/10.1016/j.reactfunctpolym.2010.01.005

    Article  CAS  Google Scholar 

  9. Xiaoqi S, Yang J, Ji C, Jiutong M (2009) Solvent impregnated resin prepared using task-specific ionic liquids for rare earth separation. J Rare Earths 27:932–936. https://doi.org/10.1016/S1002-0721(08)60365-8

    Article  Google Scholar 

  10. Strikovsky AG, Jeřábek K, Cortina JL, Sastre AM, Warshawsky A (1996) Solvent impregnated resin (SIR) containing dialkyldithiophosphoric acid on Amberlite XAD-2: extraction of copper and comparison to the liquid-liquid extraction. React Funct Polym 28:149–158. https://doi.org/10.1016/1381-5148(95)00060-7

    Article  CAS  Google Scholar 

  11. Kahouli S (2011) Re-examining uranium supply and demand: new insights. Energy Policy 39:358–376. https://doi.org/10.1016/j.enpol.2010.10.007

    Article  CAS  Google Scholar 

  12. Krymm R, Woite G (1976) Estimates of future demand for uranium and nuclear fuel cycle services. IAEA Bull 18:5

    Google Scholar 

  13. Parker BF, Zhang Z, Rao L, Arnold J (2018) An overview and recent progress in the chemistry of uranium extraction from seawater. Dalton Trans 47:639–644. https://doi.org/10.1039/C7DT04058J

    Article  CAS  PubMed  Google Scholar 

  14. Brugge D, deLemos JL, Oldmixon B (2005) Exposure pathways and health effects associated with chemical and radiological toxicity of natural uranium: a review. Rev Environ Health 20:177–194

    Article  CAS  PubMed  Google Scholar 

  15. Brugge D, Buchner V (2011) Health effects of uranium: new research findings. Rev Environ Health 26:231–249. https://doi.org/10.1515/REVEH.2011.032

  16. Bjørklund G, Christophersen OA, Chirumbolo S, Selinus O, Aaseth J (2017) Recent aspects of uranium toxicology in medical geology. Environ Res 156:526–533. https://doi.org/10.1016/j.envres.2017.04.010

    Article  CAS  PubMed  Google Scholar 

  17. Ma M, Wang R, Xu L, Xu M, Liu S (2020) Emerging health risks and underlying toxicological mechanisms of uranium contamination: lessons from the past two decades. Environ Int 145:106107. https://doi.org/10.1016/j.envint.2020.106107

    Article  CAS  PubMed  Google Scholar 

  18. Kaufmann RF, Eadie GG, Russell CR (1976) Effects of uranium mining and milling on ground water in the Grants Mineral Belt, New Mexico. Ground Water 14:296–308. https://doi.org/10.1111/j.1745-6584.1976.tb03119.x

    Article  CAS  Google Scholar 

  19. Wang J, Liu J, Li H, Song G, Chen Y, Xiao T, Qi J, Zhu L (2012) Surface water contamination by uranium mining/milling activities in northern Guangdong province. China. Clean Soil Air Water 40(2012):1357–1363. https://doi.org/10.1002/clen.201100512

    Article  CAS  Google Scholar 

  20. Carvalho FP, Oliveira JM, Lopes I, Batista A (2007) Radionuclides from past uranium mining in rivers of Portugal. J Environ Radioact 98:298–314. https://doi.org/10.1016/j.jenvrad.2007.05.007

    Article  CAS  PubMed  Google Scholar 

  21. Durakoviæ A (1999) Medical effects of internal contamination with uranium. Croat Med J 40:49–66

    Google Scholar 

  22. Dehghani M, Rezaie N, Zarei M, Parseh I, Soleimani H, Keshtkar M, Zarei AA, Khaksefidi R (2022) Chemical and radiological human health risk assessment from uranium and fluoride concentrations in tap water samples collected from Shiraz, Iran; Monte-Carlo simulation and sensitivity analysis. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2022.2038145

    Article  Google Scholar 

  23. Khamirchi R, Hosseini-Bandegharaei A, Alahabadi A, Sivamani S, Rahmani-Sani A, Shahryari T, Anastopoulos I, Miri M, Tran HN (2018) Adsorption property of Br-PADAP-impregnated multiwall carbon nanotubes towards uranium and its performance in the selective separation and determination of uranium in different environmental samples. Ecotoxicol Environ Saf 150:136–143. https://doi.org/10.1016/j.ecoenv.2017.12.039

    Article  CAS  PubMed  Google Scholar 

  24. Gan Q, Xu M, Li Q, Yang S, Yin J, Hua D (2021) Two-dimensional ion-imprinted silica for selective uranium extraction from low-level radioactive effluents. ACS Sustain Chem Eng 9:7973–7981. https://doi.org/10.1021/acssuschemeng.1c02248

    Article  CAS  Google Scholar 

  25. Lee M, Ryu HJ (2016) A preliminary study for development of amidoxime-functionalized silica adsorbents for uranium (IV) extraction from seawater. IAEA INIS Technical document, INIS 48(33), Ref No. 48067267

  26. Sabarudin A, Oshima M, Takayanagi T, Hakim L, Oshita K, Gao YH, Motomizu S (2007) Functionalization of chitosan with 3, 4-dihydroxybenzoic acid for the adsorption/collection of uranium in water samples and its determination by inductively coupled plasma-mass spectrometry. Anal Chim Acta 581:214–220. https://doi.org/10.1016/j.aca.2006.08.024

    Article  CAS  PubMed  Google Scholar 

  27. Chen B, Wang J, Kong L, Mai X, Zheng L, Zhong Q, Liang J, Chen D (2017) Adsorption of uranium from uranium mine contaminated water using phosphate rock apatite (PRA): isotherm, kinetic and characterization studies. Colloids Surf A 520:612–621. https://doi.org/10.1016/j.colsurfa.2017.01.055

    Article  CAS  Google Scholar 

  28. Tang N, Liang J, Niu C, Wang H, Luo Y, Xing W, Ye S, Liang C, Guo H, Guo J, Zhang Y (2020) Amidoxime-based materials for uranium recovery and removal. J Mater Chem A 8:7588–7625. https://doi.org/10.1039/C9TA14082D

    Article  CAS  Google Scholar 

  29. Zeng I, Zhang H, Sui Y, Hu N, Ding D, Wang F, Xue J, Wang Y (2017) New amidoxime-based material TMP-g-AO for uranium adsorption under seawater conditions. Ind Eng Chem Res 56:5021–5032. https://doi.org/10.1021/acs.iecr.6b05006

    Article  CAS  Google Scholar 

  30. Yuan D, Chen L, Xiong X, Yuan L, Liao S, Wang Y (2016) Removal of uranium (VI) from aqueous solution by amidoxime functionalized superparamagnetic polymer microspheres prepared by a controlled radical polymerization in the presence of DPE. Chem Eng J 285:358–367. https://doi.org/10.1016/j.cej.2015.10.014

    Article  CAS  Google Scholar 

  31. Ahmad M, Wang J, Yang Z, Zhang Q, Zhang B (2020) Ultrasonic-assisted preparation of amidoxime functionalized silica framework via oil-water emulsion method for selective uranium adsorption. Chem Eng J 389:124441. https://doi.org/10.1016/j.cej.2020.124441

    Article  CAS  Google Scholar 

  32. Chen Y, Pan B, Zhang S, Li S, Lv L, Zhang W (2011) Immobilization of polyethylenimine nanoclusters onto a cation exchange resin through self-crosslinking for selective Cu (II) removal. J Hazard Mater 190:1037–1044. https://doi.org/10.1016/j.jhazmat.2011.04.049

    Article  CAS  PubMed  Google Scholar 

  33. Pranudta A, Chanthapon N, Kidkhunthod P, El-Moselhy MM, Nguyen TT, Padungthon S (2021) Selective removal of Pb from lead-acid battery wastewater using hybrid gel cation exchanger loaded with hydrated iron oxide nanoparticles: fabrication, characterization, and pilot-scale validation. J Environ Chem Eng 9:106282. https://doi.org/10.1016/j.jece.2021.106282

    Article  CAS  Google Scholar 

  34. Shahadat M, Shalla AH, Raeissi AS (2012) Synthesis, characterization, and sorption behavior of a novel composite cation exchange adsorbent. Ind Eng Chem Res 51:15525–15529. https://doi.org/10.1021/ie3014555

    Article  CAS  Google Scholar 

  35. Yang L, Li Y, Wang L, Zhang Y, Ma X, Ye Z (2010) Preparation and adsorption performance of a novel bipolar PS-EDTA resin in aqueous phase. J Hazard Mater 180:98–105. https://doi.org/10.1016/j.jhazmat.2010.03.111

    Article  CAS  PubMed  Google Scholar 

  36. Zhang C, Su J, Zhu H, Xiong J, Liu X, Li D, Chen Y, Li Y (2017) The removal of heavy metal ions from aqueous solutions by amine functionalized cellulose pretreated with microwave-H2O2. RSC Adv 7:34182–34191

    Article  CAS  Google Scholar 

  37. Suneesh AS, Syamala KV, Venkatesan KA, Antony MP, Vasudeva Rao PR (2015) Chromatographic separation of americium (III) from europium (III) using alkyl diglycolamic acid. Sep Sci Technol 50:1213–1220

    Article  CAS  Google Scholar 

  38. Ilaiyaraja P, Deb AS, Ponraju D, Ali SM, Venkatraman B (2017) Surface engineering of PAMAM-SDB chelating resin with diglycolamic acid (DGA) functional group for efficient sorption of U (VI) and Th (IV) from aqueous medium. J Hazard Mat 328:1–11

    Article  CAS  Google Scholar 

  39. Naganawa H, Shimojo K, Mitamura H, Sugo Y, Noro J, Goto M (2007) A new" green" extractant of the diglycol amic acid type for lanthanides. Solvent Extr Res Dev Jpn 14:151

    CAS  Google Scholar 

  40. Shimojo K, Naganawa H, Noro J, Kubota F, Goto M (2007) Extraction behavior and separation of lanthanides with a diglycol amic acid derivative and a nitrogen-donor ligand. Anal Sci 23:1427

    Article  CAS  PubMed  Google Scholar 

  41. Shimojo K, Aoyagi N, Saito T, Okamura H, Kubota F, Goto M, Naganawa H (2014) Highly efficient extraction separation of lanthanides using a diglycolamic acid extractant. Anal Sci 30:263

    Article  CAS  PubMed  Google Scholar 

  42. Fatima B, Siddiqui S, Ahmed R, Chaudhry SA (2019) Preparation of functionalized CuO nanoparticles using Brassica rapa leave extract for water purification. Desalin Water Treat 164:192–205

    Article  CAS  Google Scholar 

  43. Ragheb E, Shamsipur M, Jalali F, Mousavi F (2022) Modified magnetic-metal organic framework as a green and efficient adsorbent for removal of heavy metals. J Environ Chem Eng 10:107297

    Article  CAS  Google Scholar 

  44. Siddiqui SI, Zohra F, Chaudhry SA (2019) Nigella sativa seed based nanohybrid composite-Fe2O3–SnO2/BC: a novel material for enhanced adsorptive removal of methylene blue from water. Environ Res 178(2019):108667

    Article  CAS  PubMed  Google Scholar 

  45. Bulin C, Ma Z, Guo T, Li B, Zhang Y, Zhang B, Xing R, Ge X (2021) Magnetic graphene oxide nanocomposite: one-pot preparation, adsorption performance and mechanism for aqueous Mn (II) and Zn (II). J Phys Chem Solids 156:110130

    Article  CAS  Google Scholar 

  46. Boyd GE, Adamson AW, Myers LS Jr (1947) The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics1. J Am Chem Soc 69:2836–2848

    Article  CAS  PubMed  Google Scholar 

  47. Araucz K, Aurich A, Kołodyńska D (2020) Novel multifunctional ion exchangers for metal ions removal in the presence of citric acid. Chemosphere 251:126331

    Article  CAS  PubMed  Google Scholar 

  48. Plazinski W (2010) Applicability of the film-diffusion model for description of the adsorption kinetics at the solid/solution interfaces. Appl Surf Sci 256:5157–5163

    Article  CAS  Google Scholar 

  49. Yao C, Chen T (2017) A film-diffusion-based adsorption kinetic equation and its application. Chem Eng Res Des 119(2017):87–92

    Article  CAS  Google Scholar 

  50. Ghibate R, Senhaji O, Taouil R (2021) Kinetic and thermodynamic approaches on Rhodamine B adsorption onto pomegranate peel. Case Stud Chem Environ Eng 3(2021):100078

    Article  CAS  Google Scholar 

  51. GolshanTafti A, Rashidi A, Tayebi HA, Yazdanshenas ME (2018) Comparison of different kinetic models for adsorption of acid blue 62 as an environmental pollutant from aqueous solution onto mesoporous Silicate SBA-15 modified by Tannic acid. Int J Nano Dimens 9:79–88

    Google Scholar 

  52. Younes AA, Masoud AM, Taha MH (2018) Uranium sorption from aqueous solutions using polyacrylamide-based chelating sorbents. Sep Sci Technol 53:2573–2586

    Article  CAS  Google Scholar 

  53. Yousefi SR, Ahmadi SJ, Shemirani F, Jamali MR, Salavati-Niasari M (2009) Simultaneous extraction and preconcentration of uranium and thorium in aqueous samples by new modified mesoporous silica prior to inductively coupled plasma optical emission spectrometry determination. Talanta 80:212–217

    Article  CAS  PubMed  Google Scholar 

  54. Youssef WM (2017) Uranium adsorption from aqueous solution using sodium bentonite activated clay. J Chem Eng Process Technol 8(2017):157–170

    Google Scholar 

  55. Cheira MF, Mira HI, Sakr AK, Mohamed SA (2019) Adsorption of U (VI) from acid solution on a low-cost sorbent: equilibrium, kinetic, and thermodynamic assessments. Nucl Sci Tech 30(2019):1–18

    Google Scholar 

  56. Zareh MM, Aldaher A, Hussein AEM, Mahfouz MG, Soliman M (2013) Uranium adsorption from a liquid waste using thermally and chemically modified bentonite. J Radioanal Nucl Chem 295(2013):1153–1159

    Article  CAS  Google Scholar 

  57. Metilda P, Sanghamitra K, Gladis JM, Naidu GRK, Rao TP (2005) Amberlite XAD-4 functionalized with succinic acid for the solid phase extractive preconcentration and separation of uranium (VI). Talanta 65:192–200

    CAS  PubMed  Google Scholar 

  58. Metilda P, Gladis JM, Rao TP (2005) Catechol functionalized aminopropyl silica gel: synthesis, characterization and preconcentrative separation of uranium (VI) from thorium (IV). Radiochim Acta 93:219–224

    Article  CAS  Google Scholar 

  59. Jamali MR, Assadi Y, Shemirani F, Hosseini MRM, Kozani RR, Masteri-Farahani M, Salavati-Niasari M (2006) Synthesis of salicylaldehyde-modified mesoporous silica and its application as a new sorbent for separation, preconcentration and determination of uranium by inductively coupled plasma atomic emission spectrometry. Anal Chim Acta 579:68–73

    Article  CAS  PubMed  Google Scholar 

  60. Salehi E, Askari M, Darvishi Y (2020) Novel combinatorial extensions to breakthrough curve modeling of an adsorption column—depth filtration hybrid process. J Ind Eng Chem 86:232–243

    Article  CAS  Google Scholar 

  61. Chittoo BS, Sutherland C (2020) Column breakthrough studies for the removal and recovery of phosphate by lime-iron sludge: modeling and optimization using artificial neural network and adaptive neuro-fuzzy inference system. Chin J Chem Eng 28:1847–1859

    Article  CAS  Google Scholar 

  62. Bokhove J, Schuur B, de Haan AB (2012) Solvent design for trace removal of pyridines from aqueous streams using solvent impregnated resins. Sep Purif Technol 98:410–418

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. S. Suneesh or N. Ramanathan.

Ethics declarations

Conflict of interest

The authors wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvan, B.R., Suneesh, A.S. & Ramanathan, N. Diglycolamic acid coated cation exchange adsorbent for uranium removal by extraction chromatography. J Radioanal Nucl Chem 332, 1775–1786 (2023). https://doi.org/10.1007/s10967-023-08869-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08869-6

Keywords

Navigation