Skip to main content
Log in

Zinc loaded amidoxime polyacrylonitrile porous resin microcapsules for uranium extraction from seawater

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study, a microcapsule resin grafted with amidoxime group was prepared by phase transformation method, and the microcapsule resin was loaded with zinc as an antibacterial agent. The final preparation of Zn@AO-PAN PMR enhanced the antibacterial ability of Zn@AO-PAN PMR in real seawater based on its good uranium adsorption performance. The theoretical maximum adsorption capacity of Zn@AO-PAN PMR in real seawater could reach 50.30 mg/g. At the same time, the loading of Zn don’t lose the adsorption capacity of the resin for U(VI). The antibacterial mechanism of Zn@AO-PAN PMR was explored using MAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sholl DS, Lively RP (2016) Seven chemical separations to change the world. Nature 532:435–437. https://doi.org/10.1038/532435a

    Article  PubMed  Google Scholar 

  2. Abney CW, Mayes RT, Saito T, Dai S (2017) Materials for the recovery of uranium from seawater. Chem Rev 117:13935–14013. https://doi.org/10.1021/acs.chemrev.7b00355

    Article  CAS  PubMed  Google Scholar 

  3. Ling C, Liu X, Yang X, Hu J, Li R, Pang L, Ma H, Li J, Wu G, Lu S, Wang D (2017) Uranium adsorption tests of amidoxime-based ultrahigh molecular weight polyethylene fibers in simulated seawater and natural coastal marine seawater from different locations. Ind Eng Chem Res 56:1103–1111. https://doi.org/10.1021/acs.iecr.6b04181

    Article  CAS  Google Scholar 

  4. Li W, Chen R, Liu Q, Liu J, Yu J, Zhang H, Li R, Zhang M, Wang J (2018) Hierarchical Ni-Al layered double hydroxide in situ anchored onto polyethylenimine-functionalized fibers for efficient U(VI) capture. Acs Sustain Chem Eng 6:13385–13394. https://doi.org/10.1021/acssuschemeng.8b03183

    Article  CAS  Google Scholar 

  5. Endrizzi F, Rao L (2014) Chemical speciation of uranium(VI) in marine environments: complexation of calcium and magnesium ions with (UO2)(CO3)(3) (4-) and the effect on the extraction of uranium from seawater. Chem-a Eur J 20:14499–14506. https://doi.org/10.1002/chem.201403262

    Article  CAS  Google Scholar 

  6. Liu C, Hsu PC, Xie J, Zhao J, Wu T, Wang H, Liu W, Zhang J, Chu S, Cui Y (2017) A half-wave rectified alternating current electrochemical method for uranium extraction from seawater. Nat Energy. https://doi.org/10.1038/nenergy.2017.7

    Article  Google Scholar 

  7. Kabay N, Demircioglu M, Yayli S, Gunay E, Yuksel M, Saglam M, Streat M (1998) Recovery of uranium from phosphoric acid solutions using chelating ion-exchange resins. Ind Eng Chem Res 37:1983–1990. https://doi.org/10.1021/ie970518k

    Article  CAS  Google Scholar 

  8. Manos MJ, Kanatzidis MG (2012) Layered metal sulfides capture uranium from seawater. J Am Chem Soc 134:16441–16446. https://doi.org/10.1021/ja308028n

    Article  CAS  PubMed  Google Scholar 

  9. Cheng Y, He P, Dong F, Nie X, Ding C, Wang S, Zhang Y, Liu H, Zhou S (2019) Polyamine and amidoxime groups modified bifunctional polyacrylonitrile-based ion exchange fibers for highly efficient extraction of U(VI) from real uranium mine water. Chem Eng J 367:198–207. https://doi.org/10.1016/j.cej.2019.02.149

    Article  CAS  Google Scholar 

  10. Maity S, Sahu SK, Pandit GG (2015) Standardization of solvent extraction procedure for determination of uranium in seawater. J Radioanal Nucl Chem 303:33–37. https://doi.org/10.1007/s10967-014-3410-9

    Article  CAS  Google Scholar 

  11. Gai T, Li Y, Tang H, Li R, Shao L, Du Y, Ren Y (2021) Synthesis of graphene gel loading TBP via a one-step method, and its application for uranyl extraction. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2020.118224

    Article  Google Scholar 

  12. Luo W, Kelly SD, Kemner KM, Watson D, Zhou J, Jardine PM, Gu B (2009) Sequestering uranium and technetium through co-precipitation with aluminum in a contaminated acidic environment. Environ Sci Technol 43:7516–7522. https://doi.org/10.1021/es900731a

    Article  CAS  PubMed  Google Scholar 

  13. Kim J, Tsouris C, Mayes RT, Oyola Y, Saito T, Janke CJ, Dai S, Schneider E, Sachde D (2013) Recovery of uranium from seawater: a review of current status and future research needs. Sep Sci Technol 48:367–387. https://doi.org/10.1080/01496395.2012.712599

    Article  CAS  Google Scholar 

  14. Torkabad MG, Keshtkar AR, Safdari SJ (2017) Uranium membrane separation from binary aqueous solutions of UO22+-K+ and UO22+-Ca2+ by the nanofiltration process. Sep Sci Technol 52:1095–1105. https://doi.org/10.1080/01496395.2017.1279182

    Article  CAS  Google Scholar 

  15. Luo W, Xiao G, Tian F, Richardson JJ, Wang Y, Zhou J, Guo J, Liao X, Shi B (2019) Engineering robust metal-phenolic network membranes for uranium extraction from seawater. Energy Environ Sci 12:607–614. https://doi.org/10.1039/c8ee01438h

    Article  CAS  Google Scholar 

  16. Choi SH, Choi MS, Park YT, Lee KP, Kang HD (2003) Adsorption of uranium ions by resins with amidoxime and amidoxime/carboxyl group prepared by radiation-induced polymerization. Radiat Phys Chem 67:387–390. https://doi.org/10.1016/s0969-806x(03)00072-0

    Article  CAS  Google Scholar 

  17. Vivero-Escoto JL, Carboni M, Abney CW, deKrafft KE, Lin W (2013) Organo-functionalized mesoporous silicas for efficient uranium extraction. Microporous Mesoporous Mater 180:22–31. https://doi.org/10.1016/j.micromeso.2013.05.030

    Article  CAS  Google Scholar 

  18. Hassanin MA, El-Gendy HS, Cheira MF, Atia BM (2021) Uranium ions extraction from the waste solution by thiosemicarbazide anchored cellulose acetate. Int J Environ Anal Chem 101:351–369. https://doi.org/10.1080/03067319.2019.1667984

    Article  CAS  Google Scholar 

  19. Gado MA, Atia BM, Cheira MF, Elawady ME, Demerdash M (2021) Highly efficient adsorption of uranyl ions using hydroxamic acid-functionalized graphene oxide. Radiochim Acta 109:743–757. https://doi.org/10.1515/ract-2021-1063

    Article  CAS  Google Scholar 

  20. Chen L, Bai Z, Zhu L, Zhang L, Cai Y, Li Y, Liu W, Wang Y, Chen L, Diwu J, Wang J, Chai Z, Wang S (2017) Ultrafast and efficient extraction of uranium from seawater using an amidoxime appended metal-organic framework. ACS Appl Mater Interfaces 9:32446–32451. https://doi.org/10.1021/acsami.7b12396

    Article  CAS  PubMed  Google Scholar 

  21. Zhang B, Guo X, Xie S, Liu X, Ling C, Ma H, Yu M, Li J (2016) Synergistic nanofibrous adsorbent for uranium extraction from seawater. RSC Adv 6:81995–82005. https://doi.org/10.1039/c6ra18785d

    Article  CAS  Google Scholar 

  22. Sun RP, Qu C, Jiang C, Du ZY, Mo HL, Wang J, Chen SW (2022) Preparation and performance of silver-incorporated antibacterial amidoximated electrospun nanofiber for uranium extraction from seawater. J Radioanal Nucl Chem 331:427–438. https://doi.org/10.1007/s10967-021-08087-y

    Article  CAS  Google Scholar 

  23. Mo H, Sun R, Qu C, Jiang C, Du Z, Wang J, Wang Z, Meng X, Chen S (2022) Preparation and performance of amidoximated silver-silica core–shell nanoparticles for uranium extraction from seawater. J Radioanal Nucl Chem 331:4541–4552. https://doi.org/10.1007/s10967-022-08514-8

    Article  CAS  Google Scholar 

  24. Ma H, Zhang F, Li Q, Chen G, Hu S, Cheng H (2019) Preparation of ZnO nanoparticle loaded amidoximated wool fibers as a promising antibiofouling adsorbent for uranium(vi) recovery. RSC Adv 9:18406–18414. https://doi.org/10.1039/c9ra03777b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ao J-X, Yuan Y-H, Xu X, Xu L, Xing Z, Li R, Wu G-Z, Guo X-J, Ma H-J, Li Q-N (2019) Trace zinc-preload for enhancement of uranium adsorption performance and antifouling property of AO-functionalized UHMWPE fiber. Ind Eng Chem Res 58:8026–8034. https://doi.org/10.1021/acs.iecr.8b06455

    Article  CAS  Google Scholar 

  26. Mimura H, Yan W, Wang Y, Niibori Y, Yamagishi I, Ozawa M, Ohnishi T, Koyama S (2011) Selective separation and recovery of cesium by ammonium tungstophosphate-alginate microcapsules. Nucl Eng Des 241:4750–4757. https://doi.org/10.1016/j.nucengdes.2011.03.031

    Article  CAS  Google Scholar 

  27. Wu Y, Mimura H, Niibori Y, Ohnishi T, Koyama S, Wei Y (2012) Study on adsorption behavior of cesium using ammonium tungstophosphate (AWP)-calcium alginate microcapsules. Sci China-Chem 55:1719–1725. https://doi.org/10.1007/s11426-012-4696-5

    Article  CAS  Google Scholar 

  28. Pak YL, Swamy KMK, Yoon J (2015) Recent progress in fluorescent imaging probes. Sensors 15:24374–24396. https://doi.org/10.3390/s150924374

    Article  PubMed  PubMed Central  Google Scholar 

  29. Long N, Qiao Y, Xu Z, Tu J, Lu Z (2020) Recent advances and application in whole-genome multiple displacement amplification. Quant Biol 8:279–294. https://doi.org/10.1007/s40484-020-0217-2

    Article  CAS  Google Scholar 

  30. Hu Z-H, Omer AM, Ouyang X-k, Yu D (2018) Fabrication of carboxylated cellulose nanocrystal/sodium alginate hydrogel beads for adsorption of Pb(II) from aqueous solution. Int J Biol Macromol 108:149–157. https://doi.org/10.1016/j.ijbiomac.2017.11.171

    Article  CAS  PubMed  Google Scholar 

  31. Ashrafi F, Firouzzare M, Ahmadi SJ, Sohrabi MR, Khosravi M (2019) Preparation and modification of forcespun polypropylene nanofibers for adsorption of uranium (VI) from simulated seawater. Ecotoxicol Environ Saf. https://doi.org/10.1016/j.ecoenv.2019.109746

    Article  PubMed  Google Scholar 

  32. Friis JC, Holm C, Halling-Sorensen B (1998) Evaluation of elemental composition of algal biomass as toxical endpoint. Chemosphere 37:2665–2676. https://doi.org/10.1016/s0045-6535(98)00153-2

    Article  CAS  Google Scholar 

  33. Yu C, Bao S, Zhang Y, Chen B (2021) Separation and adsorption of V(V) from canadium-containing solution by TOMAC-impregnated resins. Chem Eng Res Des 174:405–413. https://doi.org/10.1016/j.cherd.2021.08.019

    Article  CAS  Google Scholar 

  34. Li JD, Li YB, Wang XJ, Yang WH, Zhou G (2006) Antibacterial effect and the mechanism of Cu2+, Zn2+ bearing nano-hydroxyapatite. J Inorg Mater 21:162–168

    Google Scholar 

  35. Wang H-z, He X-j, Wang R-y, Li J-f, Zhang X-y, Tang B (2017) Antibacterial and biocompatibility of zinc and strontium co-doped porous TiO2 coating. China Surf Eng 30:20–26. https://doi.org/10.11933/j.issn.1007-9289.20161118001

    Article  Google Scholar 

  36. Ng YH, Leung YH, Liu FZ, Ng AMC, Gao MH, Chan CMN, Djurisic AB, Leung FCC, Chan WK (2013) Antibacterial activity of ZnO nanoparticles under ambient illumination - The effect of nanoparticle properties. Thin Solid Films 542:368–372. https://doi.org/10.1016/j.tsf.2013.05.167

    Article  CAS  Google Scholar 

  37. Sa AS, de Lima IS, Honorio LM, Furtini MB, de Souza JKD, dos Santos FEP, Barreto HM, Tabuti TG, da Silva-Filho EC, Triboni ER, Osajima JA (2022) ROS-mediated antibacterial response of ZnO and ZnO containing cerium under light. Chem Pap. https://doi.org/10.1007/s11696-022-02390-y

    Article  Google Scholar 

Download references

Acknowledgements

This study is financially supported by the National Natural Science Foundation of China (21876073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suwen Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 467 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Meng, X., Du, Z. et al. Zinc loaded amidoxime polyacrylonitrile porous resin microcapsules for uranium extraction from seawater. J Radioanal Nucl Chem 332, 1225–1235 (2023). https://doi.org/10.1007/s10967-023-08851-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08851-2

Keywords

Navigation