Skip to main content
Log in

Efficient removal of uranium (VI) from aqueous solution by thiol-functionalized montmorillonite/nanoscale zero-valent iron composite

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Montmorillonite-supported nanoscale zero-valent iron composite functionalized by thiols (nZVI/Mt-SH) was synthesized by a two-step co-precipitation method for uranium (IV) removal from water. The SEM investigation showed that the morphology of nZVI/Mt was successfully modified by the (3-Mercaptopropyl) trimethoxysilane. The optimal adsorption efficiencies could be attributed to the synergetic behavior between SH-functionalized clay and iron nanoparticles. Analysis of the removal kinetics indicated the feature of monolayer chemisorption. The intraparticle diffusion exploration by Weber-Morris model illustrated a multi-phase removal process. This work suggests that the as-synthesized particles could be used as an efficient adsorbent to remove U(VI) from contaminated water sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li Y, Dai Y, Tao Q, Gao Z, Xu L (2022) Ultrahigh efficient and selective adsorption of U(VI) with amino acids-modified magnetic chitosan biosorbents: performance and mechanism. Int J Biol Macromol 214:54–66. https://doi.org/10.1016/j.ijbiomac.2022.06.061

    Article  CAS  PubMed  Google Scholar 

  2. Li Q, Wang H, Chen Z, He X, Liu Y, Qiu M, Wang X (2021) Adsorption-reduction strategy of U(VI) on NZVI-supported zeolite composites via batch, visual and XPS techniques. J Mol Liquids 339:116719. https://doi.org/10.1016/j.molliq.2021.116719

    Article  CAS  Google Scholar 

  3. Liao J, Liu P, Xie Y, Zhang Y (2021) Metal oxide aerogels: Preparation and application for the uranium removal from aqueous solution. Sci Total Environ 768:144212–150000. https://doi.org/10.1016/j.scitotenv.2020.144212

    Article  CAS  PubMed  Google Scholar 

  4. Zuo Q, Gao X, Yang J, Zhang P, Chen G, Li Y, Shi K, Wu W (2017) Investigation on the thermal activation of montmorillonite and its application for the removal of U(VI) in aqueous solution. J Taiwan Inst Chem Eng 80:754–760. https://doi.org/10.1016/j.jtice.2017.09.016

    Article  CAS  Google Scholar 

  5. Bjørklund G, Semenova Y, Pivina L, Dadar M, Rahman MM, Aaseth J, Chirumbolo S (2020) Uranium in drinking water: a public health threat. Arch Toxicol 94:1551–1560. https://doi.org/10.1007/s00204-020-02676-8

    Article  CAS  PubMed  Google Scholar 

  6. Yuvaraja G, Zheng N-C, Pang Y, Su M, Chen D-Y, Kong L-J, Mehmood S, Subbaiah MV, Wen J-C (2020) Removal of U(VI) from aqueous and polluted water solutions using magnetic Arachis hypogaea leaves powder impregnated into chitosan macromolecule. Int J Biol Macromol 148:887–897. https://doi.org/10.1016/j.ijbiomac.2020.01.042

    Article  CAS  PubMed  Google Scholar 

  7. Xiao R, Tobin John M, Zha M, Hou Y-L, He J, Vilela F, Xu Z (2017) A nanoporous graphene analog for superfast heavy metal removal and continuous-flow visible-light photoredox catalysis. J Mater Chem A 5:20180–20187. https://doi.org/10.1039/C7TA05534J

    Article  CAS  Google Scholar 

  8. Abbasizadeh S, Keshtkar AR, Mousavian MA (2014) Sorption of heavy metal ions from aqueous solution by a novel cast PVA/TiO2 nanohybrid adsorbent functionalized with amine groups. J Ind Eng Chem 20:1656–1664. https://doi.org/10.1016/j.jiec.2013.08.013

    Article  CAS  Google Scholar 

  9. Zhang M, Yi K, Zhang X, Han P, Liu W, Tong M (2020) Modification of zero valent iron nanoparticles by sodium alginate and bentonite: Enhanced transport, effective hexavalent chromium removal and reduced bacterial toxicity. J Hazard Mater 388:121822. https://doi.org/10.1016/j.jhazmat.2019.121822

    Article  CAS  PubMed  Google Scholar 

  10. Santos FSd, Lago FR, Yokoyama L, Fonseca FV (2017) Synthesis and characterization of zero-valent iron nanoparticles supported on SBA-15. J Mater Res Technol 6:178–183. https://doi.org/10.1016/j.jmrt.2016.11.004

    Article  CAS  Google Scholar 

  11. Kanel SR, Grenèche J-M, Choi H (2006) Arsenic(V) Removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40:2045–2050. https://doi.org/10.1021/es0520924

    Article  CAS  PubMed  Google Scholar 

  12. Jing C, Li YL, Landsberger S (2016) Review of soluble uranium removal by nanoscale zero valent iron. J Environ Radioact 164:65–72. https://doi.org/10.1016/j.jenvrad.2016.06.027

    Article  CAS  PubMed  Google Scholar 

  13. Boparai HK, Joseph M, O’Carroll DM (2011) Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J Hazard Mater 186:458–465. https://doi.org/10.1016/j.jhazmat.2010.11.029

    Article  CAS  PubMed  Google Scholar 

  14. Guan X, Sun Y, Qin H, Li J, Lo IMC, He D, Dong H (2015) The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994–2014). Water Res 75:224–248. https://doi.org/10.1016/j.watres.2015.02.034

    Article  CAS  PubMed  Google Scholar 

  15. Arancibia-Miranda N, Baltazar SE, García A, Muñoz-Lira D, Sepúlveda P, Rubio MA, Altbir D (2016) Nanoscale zero valent supported by zeolite and montmorillonite: template effect of the removal of lead ion from an aqueous solution. J Hazard Mater 301:371–380. https://doi.org/10.1016/j.jhazmat.2015.09.007

    Article  CAS  PubMed  Google Scholar 

  16. Wang Z, Wu X, Luo S, Wang Y, Tong Z, Deng Q (2020) Shell biomass material supported nano-zero valent iron to remove Pb2+ and Cd2+ in water. R Soc Open Sci 7:201192. https://doi.org/10.1098/rsos.201192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang W, Qian L, Ouyang D, Chen Y, Han L, Chen M (2019) Effective removal of Cr(VI) by attapulgite-supported nanoscale zero-valent iron from aqueous solution: enhanced adsorption and crystallization. Chemosphere 221:683–692. https://doi.org/10.1016/j.chemosphere.2019.01.070

    Article  CAS  PubMed  Google Scholar 

  18. Yin Y, Shen C, Bi X, Li T (2020) Removal of hexavalent chromium from aqueous solution by fabricating novel heteroaggregates of montmorillonite microparticles with nanoscale zero-valent iron. Sci Rep 10:12137. https://doi.org/10.1038/s41598-020-69244-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu T, Zhang Z, Wang Z, Wang ZL, Bush R (2019) Highly efficient and rapid removal of arsenic(iii) from aqueous solutions by nanoscale zero-valent iron supported on a zirconium 1,4-dicarboxybenzene metal-organic framework (UiO-66 MOF). RSC Adv 9:39475–39487. https://doi.org/10.1039/c9ra08595e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bakshi S, Banik C, Rathke SJ, Laird DA (2018) Arsenic sorption on zero-valent iron-biochar complexes. Water Res 137:153–163. https://doi.org/10.1016/j.watres.2018.03.021

    Article  CAS  PubMed  Google Scholar 

  21. Sheng G, Shao X, Li Y, Li J, Dong H, Cheng W, Gao X, Huang Y (2014) Enhanced removal of uranium(VI) by nanoscale zero valent iron supported on Na–bentonite and an investigation of mechanism. J Phys Chem A 118:2952–2958. https://doi.org/10.1021/jp412404w

    Article  CAS  PubMed  Google Scholar 

  22. Cheira MF, Kouraim MN, Zidan IH, Mohamed WS, Hassanein TF (2020) Adsorption of U(VI) from sulfate solution using montmorillonite/polyamide and nano-titanium oxide/polyamide nanocomposites. J Environ Chem Eng 8:104427. https://doi.org/10.1016/j.jece.2020.104427

    Article  CAS  Google Scholar 

  23. Lagadic IL, Mitchell MK, Payne BD (2001) Highly effective adsorption of heavy metal ions by a thiol-functionalized magnesium phyllosilicate clay. Environ Sci Technol 35:984–990. https://doi.org/10.1021/es001526m

    Article  CAS  PubMed  Google Scholar 

  24. Galhoum AA, Mahfouz MG, Atia AA, Abdel-Rehem ST, Gomaa NA, Vincent T, Guibal E (2015) Amino acid functionalized chitosan magnetic nanobased particles for uranyl sorption. Ind Eng Chem Res 54:12374–12385. https://doi.org/10.1021/acs.iecr.5b03331

    Article  CAS  Google Scholar 

  25. Gamba M, Olivelli M, Lázaro-Martínez JM, Gaddi G, Curutchet G, Sánchez RMT (2017) Thiabendazole adsorption on montmorillonite, octadecyltrimethylammonium- and Acremonium sp.-loaded products and their copper complexes. Chem Eng J 320:11–21. https://doi.org/10.1016/j.cej.2017.03.034

    Article  CAS  Google Scholar 

  26. Iriel A, Marco-Brown JL, Diljkan M, Trinelli MA, dos Santos AM, Fernández Cirelli A (2019) Arsenic adsorption on iron-modified montmorillonite: kinetic equilibrium and surface complexes. Environ Eng Sci 37:22–32. https://doi.org/10.1089/ees.2019.0220

    Article  CAS  Google Scholar 

  27. Yin Y, Zheng W, Yan A, Zhang C, Gou Y, Shen C (2021) A review on montmorillonite-supported nanoscale zero valent iron for contaminant removal from water and soil. Adsorpt Sci Technol 2021:9340362–9350000. https://doi.org/10.1155/2021/9340362

    Article  CAS  Google Scholar 

  28. Ren C, Li Y, Li J, Sheng G, Hu L, Zheng X (2014) Immobilization of nanoscale zero valent iron on organobentonite for accelerated reduction of nitrobenzene. J Chem Technol Biotechnol 89:1961–1966. https://doi.org/10.1002/jctb.4283

    Article  CAS  Google Scholar 

  29. Wu J, Wang B, Blaney L, Peng G, Chen P, Cui Y, Deng S, Wang Y, Huang J, Yu G (2019) Degradation of sulfamethazine by persulfate activated with organo-montmorillonite supported nano-zero valent iron. Chem Eng J 361:99–108. https://doi.org/10.1016/j.cej.2018.12.024

    Article  CAS  Google Scholar 

  30. Liu H, Ruan X, Zhao D, Fan X, Feng T (2017) Enhanced adsorption of 2,4-dichlorophenol by nanoscale zero-valent iron loaded on bentonite and modified with a cationic surfactant. Ind Eng Chem Res 56:191–197. https://doi.org/10.1021/acs.iecr.6b03864

    Article  CAS  Google Scholar 

  31. Li J, Zhang Y, Cai W, Shao X (2011) Simultaneous determination of mercury, lead and cadmium ions in water using near-infrared spectroscopy with preconcentration by thiol-functionalized magnesium phyllosilicate clay. Talanta 84:679–683. https://doi.org/10.1016/j.talanta.2011.01.072

    Article  CAS  PubMed  Google Scholar 

  32. Pei P, Xu Y, Wang L, Liang X, Sun Y (2022) Thiol-functionalized montmorillonite prepared by one-step mechanochemical grafting and its adsorption performance for mercury and methylmercury. Sci Total Environ 806:150510. https://doi.org/10.1016/j.scitotenv.2021.150510

    Article  CAS  PubMed  Google Scholar 

  33. Shi Z, Nurmi JT, Tratnyek PG (2011) Effects of nano zero-valent iron on oxidation−reduction potential. Environ Sci Technol 45:1586–1592. https://doi.org/10.1021/es103185t

    Article  CAS  PubMed  Google Scholar 

  34. Liendo MA, Navarro Hidalgo GE, Sampaio CH, Heck NC (2012) Synthesis of ZVI particles for acid mine drainage reactive barriers: experimental and theoretical evaluation. J Mater Res Technol 1:75–79. https://doi.org/10.1016/S2238-7854(12)70014-5

    Article  CAS  Google Scholar 

  35. Xu Y, Ke G, Yin J, Lei W, Yang P (2019) Synthesis of thiol-functionalized hydrotalcite and its application for adsorption of uranium (VI). J Radioanal Nucl Chem 319:791–803. https://doi.org/10.1007/s10967-018-6376-1

    Article  CAS  Google Scholar 

  36. Xu C, Gu FL, Wu H (2017) BiOCl-montmorillonite as a photocatalyst for highly efficient removal of rhodamine B and orange G: Importance of the acidity and dissolved oxygen. Appl Clay Sci 147:28–35. https://doi.org/10.1016/j.clay.2017.07.025

    Article  CAS  Google Scholar 

  37. Peng K, Fu L, Li X, Ouyang J, Yang H (2017) Stearic acid modified montmorillonite as emerging microcapsules for thermal energy storage. Appl Clay Sci 138:100–106. https://doi.org/10.1016/j.clay.2017.01.003

    Article  CAS  Google Scholar 

  38. Wang S, Dong Y, He M, Chen L, Yu X (2009) Characterization of GMZ bentonite and its application in the adsorption of Pb(II) from aqueous solutions. Appl Clay Sci 43:164–171. https://doi.org/10.1016/j.clay.2008.07.028

    Article  CAS  Google Scholar 

  39. Alves JL, PdTVe R, Morales AR (2017) Evaluation of organic modification of montmorillonite with ionic and nonionic surfactants. Appl Clay Sci 150:23–33. https://doi.org/10.1016/j.clay.2017.09.001

    Article  CAS  Google Scholar 

  40. Gao J-F, Li H-Y, Pan K-L, Si C-Y (2016) Green synthesis of nanoscale zero-valent iron using a grape seed extract as a stabilizing agent and the application for quick decolorization of azo and anthraquinone dyes. RSC Adv 6:22526–22537. https://doi.org/10.1039/C5RA26668H

    Article  CAS  Google Scholar 

  41. Liu X, Cheng C, Xiao C, Shao D, Xu Z, Wang J, Hu S, Li X, Wang W (2017) Polyaniline (PANI) modified bentonite by plasma technique for U(VI) removal from aqueous solution. Appl Surf Sci 411:331–337. https://doi.org/10.1016/j.apsusc.2017.03.095

    Article  CAS  Google Scholar 

  42. Shao D, Hou G, Li J, Wen T, Ren X, Wang X (2014) PANI/GO as a super adsorbent for the selective adsorption of uranium(VI). Chem Eng J 255:604–612. https://doi.org/10.1016/j.cej.2014.06.063

    Article  CAS  Google Scholar 

  43. Han B, Zhang E, Cheng G, Zhang L, Wang D, Wang X (2018) Hydrothermal carbon superstructures enriched with carboxyl groups for highly efficient uranium removal. Chem Eng J 338:734–744. https://doi.org/10.1016/j.cej.2018.01.089

    Article  CAS  Google Scholar 

  44. Ilton ES, Boily J-F, Bagus PS (2007) Beam induced reduction of U(VI) during X-ray photoelectron spectroscopy: the utility of the U4f satellite structure for identifying uranium oxidation states in mixed valence uranium oxides. Surf Sci 601:908–916. https://doi.org/10.1016/j.susc.2006.11.067

    Article  CAS  Google Scholar 

  45. Schindler M, Hawthorne F, Freund M, Burns P (2009) XPS spectra of uranyl minerals and synthetic uranyl compounds. I: the U 4f spectrum. Geochim Cosmochim Acta 73:2471–2487. https://doi.org/10.1016/j.gca.2008.10.042

    Article  CAS  Google Scholar 

  46. Heisbourg G, Hubert S, Dacheux N, Purans J (2004) Kinetic and thermodynamic studies of the dissolution of thoria-urania solid solutions. J Nucl Mater 335:04545454–04550000. https://doi.org/10.1016/j.jnucmat.2004.05.017

    Article  CAS  Google Scholar 

  47. Bhowmick S, Chakraborty S, Mondal P, Van Renterghem W, Van den Berghe S, Roman-Ross G, Chatterjee D, Iglesias M (2014) Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: kinetics and mechanism. Chem Eng J 243:14–23. https://doi.org/10.1016/j.cej.2013.12.049

    Article  CAS  Google Scholar 

  48. Liu P, Wu H, Yuan N, Liu Y, Pan D, Wu W (2017) Removal of U(VI) from aqueous solution using synthesized β-zeolite and its ethylenediamine derivative. J Mol Liquids 234:40–48. https://doi.org/10.1016/j.molliq.2017.03.055

    Article  CAS  Google Scholar 

  49. Bi C, Zheng B, Yuan Y, Ning H, Gou W, Guo J, Chen L, Hou W, Li Y (2021) Phosphate group functionalized magnetic metal–organic framework nanocomposite for highly efficient removal of U(VI) from aqueous solution. Sci Rep 11:24328–30000. https://doi.org/10.1038/s41598-021-03246-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang C, Liu Y, Li X, Chen H, Wen T, Jiang Z, Ai Y, Sun Y, Hayat T, Wang X (2018) Highly uranium elimination by crab shells-derived porous graphitic carbon nitride: batch, EXAFS and theoretical calculations. Chem Eng J 346:406–415. https://doi.org/10.1016/j.cej.2018.03.186

    Article  CAS  Google Scholar 

  51. Campos B, Aguilar-Carrillo J, Algarra M, Gonçalves MA, Rodríguez-Castellón E, Esteves da Silva JCG, Bobos I (2013) Adsorption of uranyl ions on kaolinite, montmorillonite, humic acid and composite clay material. Appl Clay Sci 85:53–63. https://doi.org/10.1016/j.clay.2013.08.046

    Article  CAS  Google Scholar 

  52. Liger E, Charlet L, Van Cappellen P (1999) Surface catalysis of uranium(VI) reduction by iron(II). Geochim Cosmochim Acta 63:2939–2955. https://doi.org/10.1016/S0016-7037(99)00265-3

    Article  CAS  Google Scholar 

  53. Dickinson M, Scott TB (2010) The application of zero-valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent. J Hazard Mater 178:171–179. https://doi.org/10.1016/j.jhazmat.2010.01.060

    Article  CAS  PubMed  Google Scholar 

  54. Wang J, Guo X (2020) Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemosphere 258:127279–130000. https://doi.org/10.1016/j.chemosphere.2020.127279

    Article  CAS  PubMed  Google Scholar 

  55. Biswas K, Gupta K, Goswami A, Ghosh UC (2010) Fluoride removal efficiency from aqueous solution by synthetic iron(III)–aluminum(III)–chromium(III) ternary mixed oxide. Desalination 255:44–51. https://doi.org/10.1016/j.desal.2010.01.019

    Article  CAS  Google Scholar 

  56. Sheng G, Shao X, Li Y, Li J, Dong H, Cheng W, Gao X, Huang Y (2014) Enhanced removal of uranium(VI) by nanoscale zerovalent iron supported on Na-bentonite and an investigation of mechanism. J Phys Chem A 118:2952–2958. https://doi.org/10.1021/jp412404w

    Article  CAS  PubMed  Google Scholar 

  57. Tobilko V, Spasonova L, Kovalchuk I, Kornilovych B, Kholodko Y (2019) Adsorption of uranium (VI) from aqueous solutions by amino-functionalized clay minerals. Colloids Interfaces 3:41–0000. https://doi.org/10.3390/colloids3010041

    Article  CAS  Google Scholar 

  58. Zhang D, Tang H, Zhao B, Liu L, Pang H, Wang X, Yu S (2023) Immobilization of uranium by S-NZVI and UiO-66-NO2 composite through combined adsorption and reduction. J Clean Prod 390:136149–140000. https://doi.org/10.1016/j.jclepro.2023.136149

    Article  CAS  Google Scholar 

  59. Li X, Zhang M, Liu Y, Li X, Liu Y, Hua R, He C (2013) Removal of U(VI) in aqueous solution by nanoscale zero-valent iron(nZVI). Water Qual Expo Health 5:31–40. https://doi.org/10.1007/s12403-013-0084-4

    Article  CAS  Google Scholar 

  60. Kornilovych B, Kovalchuk I, Tobilko V, Ubaldini S (2020) Uranium removal from groundwater and wastewater using clay-supported nanoscale zero-valent iron. Metals 10:1421. https://doi.org/10.3390/met10111421

    Article  CAS  Google Scholar 

  61. Noubactep C, Schöner A, Meinrath G (2006) Mechanism of uranium removal from the aqueous solution by elemental iron. J Hazard Mater 132:202–212. https://doi.org/10.1016/j.jhazmat.2005.08.047

    Article  CAS  PubMed  Google Scholar 

  62. Crane RA, Pullin H, Scott TB (2015) The influence of calcium, sodium and bicarbonate on the uptake of uranium onto nanoscale zero-valent iron particles. Chem Eng J 277:252–259. https://doi.org/10.1016/j.cej.2015.03.085

    Article  CAS  Google Scholar 

  63. Zhang Z, Liu J, Cao X, Luo X, Hua R, Liu Y, Yu X, He L, Liu Y (2015) Comparison of U(VI) adsorption onto nanoscale zero-valent iron and red soil in the presence of U(VI)–CO3/Ca–U(VI)–CO3 complexes. J Hazard Mater 300:633–642. https://doi.org/10.1016/j.jhazmat.2015.07.058

    Article  CAS  PubMed  Google Scholar 

  64. Chakraborty S, Favre F, Banerjee D, Scheinost A, Mullet M, Ehrhardt J-J, Brendlé J, Vidal L, Charlet L (2010) U(VI) sorption and reduction by Fe(II) sorbed on montmorillonite. Environ Sci Technol 44:3779–3785. https://doi.org/10.1021/es903493n

    Article  CAS  PubMed  Google Scholar 

  65. Yan S, Chen Y, Xiang W, Bao Z, Liu C, Deng B (2014) Uranium(VI) reduction by nanoscale zero-valent iron in anoxic batch systems: the role of Fe(II) and Fe(III). Chemosphere 117:625–630. https://doi.org/10.1016/j.chemosphere.2014.09.087

    Article  CAS  PubMed  Google Scholar 

  66. Dong W, Tokunaga TK, Davis JA, Wan J (2012) Uranium(VI) adsorption and surface complexation modeling onto background sediments from the F-Area Savannah River Site. Environ Sci Technol 46:1565–1571. https://doi.org/10.1021/es2036256

    Article  CAS  PubMed  Google Scholar 

  67. Wang J, Chen Z, Shao D, Li Y, Xu Z, Cheng C, Asiri AM, Marwani HM, Hu S (2017) Adsorption of U(VI) on bentonite in simulation environmental conditions. J Mol Liquids 242:678–684. https://doi.org/10.1016/j.molliq.2017.07.048

    Article  CAS  Google Scholar 

  68. McKinley J, Zachara J, Smith S, Turner G (1995) The influence of uranyl hydrolysis and multiple site-binding reactions on adsorption of U(Vi) to montmorillonite. Clays Clay Miner 43:586–598. https://doi.org/10.1346/CCMN.1995.0430508

    Article  CAS  Google Scholar 

  69. Wang L, Shi Y, Yao D, Pan H, Hou H, Chen J, Crittenden JC (2019) Cd complexation with mercapto-functionalized attapulgite (MATP): adsorption and DFT study. Chem Eng J 366:569–576. https://doi.org/10.1016/j.cej.2019.02.114

    Article  CAS  Google Scholar 

  70. Kavitha D, Namasivayam C (2007) Experimental and kinetic studies on methylene blue adsorption by coir pith carbon. Biores Technol 98:14–21. https://doi.org/10.1016/j.biortech.2005.12.008

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The National Natural Science Foundation of China (NSFC, Grant numbers 42061134018, 42011530085) and the Russian Science Foundation (RSF, Grant number 21-47-00019) supported this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sen Lin or Shiyong Sun.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acheampong, E.O., Wang, K., Lv, R. et al. Efficient removal of uranium (VI) from aqueous solution by thiol-functionalized montmorillonite/nanoscale zero-valent iron composite. J Radioanal Nucl Chem 332, 1989–2002 (2023). https://doi.org/10.1007/s10967-023-08847-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08847-y

Keywords

Navigation