Skip to main content
Log in

Adsorption of Th(IV) on glutaraldehyde cross-linked N-(4-Aminobenzoyl)-ʟ-glutamic acid modified chitosan

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Due to its high adsorption capacity and adsorption efficiency, polymer gel shows excellent performances in the treatment of wastewater containing thorium. In this work, glutaraldehyde cross-linked N-(4-Aminobenzoyl)-ʟ-glutamic acid modified chitosan (CCS-AGA) was used to adsorb Th(IV) ions from aqueous solutions for the first time. FT-IR and SEM results revealed the chemical structure and surface morphology of this material. The influence of solution pH, contact time and initial concentration of Th ions on the adsorption of Th(IV) by CCS-AGA was investigated. The experimental data suggest that the adsorption behavior of CCS-AGA could be accurately predicted by the Langmuir model. The maximum theoretical adsorption capacity of CCS-AGA for Th(IV) was 162 mg/g. Moreover, this material exhibited excellent reusability and adsorption selectivity for Th(IV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Huang J, Liu Z, Huang D, Jin T, Qian Y (2022) Electrochemical deposition of uranium oxide with an electrocatalytically active electrode using double potential step technique. Chin Chem Letters 33:3762–3766. https://doi.org/10.1016/j.cclet.2021.11.008

    Article  CAS  Google Scholar 

  2. Huang J, Liu Z, Huang D, Jin T, Qian Y (2022) Efficient removal of uranium (VI) with a phytic acid-doped polypyrrole/ carbon felt electrode using double potential step technique. J Hazard Mater 433:128775. https://doi.org/10.1016/j.jhazmat.2022.128775

    Article  CAS  PubMed  Google Scholar 

  3. Ilaiyaraja P, Deb AKS, Ponraju D, Ali SM, Venkatraman B (2017) Surface engineering of PAMAM-SDB chelating resin with Diglycolamic acid (DGA) functional group for efficient sorption of U(VI) and Th(IV) from aqueous medium. J of Hazard Mater 328:1–11. https://doi.org/10.1016/j.jhazmat.2017.01.001

    Article  CAS  Google Scholar 

  4. Prabhakaran D, Subramanian MS (2003) Chemically modified chloromethylated resin as an effective metal chelator in the extraction of U(VI) and Th(IV). Anal Lett 36:2277–2289. https://doi.org/10.1081/AL-120023718

    Article  CAS  Google Scholar 

  5. Zhu T, Ding J, Shao Q, Qian Y, Huang X (2019) P, Se-Codoped MoS2 nanosheets as accelerated electrocatalysts for hydrogen evolution. Chem Cat Chem 11:689–692. https://doi.org/10.1002/cctc.201801541

    Article  CAS  Google Scholar 

  6. Chen J, Lin C, Zhang M, Jin T, Qian Y (2020) Constructing nitrogen, selenium co-doped graphene aerogel electrode materials for synergistically enhanced capacitive performance. Chem Electro Chem 7:3311–3318. https://doi.org/10.1002/celc.202000635

    Article  CAS  Google Scholar 

  7. Huang B, Wu Y, Chen B, Qian Y, Zhou N, Li N (2021) Transition-metal-atom-pairs deposited on g-CN monolayer for nitrogen reduction reaction: density functional theory calculations. Chin J Catal 42:1160–1167. https://doi.org/10.1016/S1872-2067(20)63745-7

    Article  CAS  Google Scholar 

  8. Ren G, Li Y, Chen Q, Qian Y, Zheng J, Zhu Y, Teng C (2018) Sepia-derived N, P Co-doped porous carbon spheres as oxygen reduction reaction electrocatalyst and supercapacitor. ACS Sustain Chem Eng 6:16032–16038. https://doi.org/10.1021/acssuschemeng.8b02170

    Article  CAS  Google Scholar 

  9. Huang J, Huang B, Jin T, Liu Z, Huang D, Qian Y (2022) Electrosorption of uranium (VI) from aqueous solution by phytic acid modified chitosan: an experimental and DFT study. Separat Purificat Technol 284:120284. https://doi.org/10.1016/j.seppur.2021.120284

    Article  CAS  Google Scholar 

  10. Hu Y, Ding J, Ren G, Jin T, Liu Z, Qian Y (2022) Highly efficient extraction of thorium from aqueous solution by 2-carboxyethylphosphonic acid-functionalized chitosan xerogel. Separat Purificat Technol 303:122188. https://doi.org/10.1016/j.seppur.2022.122188

    Article  CAS  Google Scholar 

  11. Jin T, Huang B, Huang J, He F, Liu Z, Qian Y (2021) A novel poly (amic-acid) modified single-walled carbon nanohorns adsorbent for efficient removal of uranium (VI) from aqueous solutions and DFT study. Colloids and Surf A: Physicochem Eng Aspects 631:127747. https://doi.org/10.1016/j.colsurfa.2021.127747

    Article  CAS  Google Scholar 

  12. Liao Y, Lei R, Weng X, Yan C, Fu J, Wei G, Zhang C, Wang M, Wang H (2023) Uranium capture by a layered 2D/2D niobium phosphate/holey graphene architecture via an electro-adsorption and electrocatalytic reduction coupling process. J Hazard Mater 442:130054. https://doi.org/10.1016/j.jhazmat.2022.130054

    Article  CAS  PubMed  Google Scholar 

  13. Liao Y, Yan C, Zeng K, Liao C, Wang M (2021) Asymmetric polysaccharide-bound graphene electrode configuration with enhanced electrosorption performance for uranium (VI) ions. Chem Eng J 424:130351. https://doi.org/10.1016/j.cej.2021.130351

    Article  CAS  Google Scholar 

  14. Moussout H, Ahlafi H, Aazza M, Bourakhouadar M (2016) Kinetics and mechanism of the thermal degradation of biopolymers chitin and chitosan using thermogravimetric analysis. Polym Degradat Stab 130:1–9. https://doi.org/10.1016/j.polymdegradstab.2016.05.016

    Article  CAS  Google Scholar 

  15. Singh J, Dutta PK, Dutta J, Hunt AJ, Macquarrie DJ, Clark JH (2009) Preparation and properties of highly soluble chitosan–l-glutamic acid aerogel derivative. Carbohydr Polym 76:188–195. https://doi.org/10.1016/j.carbpol.2008.10.011

    Article  CAS  Google Scholar 

  16. Duarte ML, Ferreira MC, Marvão MR, Rocha J (2002) An optimised method to determine the degree of acetylation of chitin and chitosan by FTIR spectroscopy. Int J Biol Macromol 31:1–8. https://doi.org/10.1016/S0141-8130(02)00039-9

    Article  CAS  PubMed  Google Scholar 

  17. Rodríguez-Félix DE, Pérez-Caballero D, del Castillo-Castro T, Castillo-Ortega MM, Garmendía-Diago Y, Alvarado-Ibarra J, Plascencia-Jatomea M, Ledezma-Pérez AS, Burruel-Ibarra SE (2022) Chitosan hydrogels chemically crosslinked with L-glutamic acid and their potential use in drug delivery. Polym Bull. https://doi.org/10.1007/s00289-022-04152-y

    Article  Google Scholar 

  18. Radwan-Praglowska J, Janus L, Piatkowski M, Sierakowska A, Matysek D (2020) ZnO nanorods functionalized with chitosan hydrogels crosslinked with azelaic acid for transdermal drug delivery. Colloids Surf B Biointerf 194:111170. https://doi.org/10.1016/j.colsurfb.2020.111170

    Article  CAS  Google Scholar 

  19. Hu Y, Fitzgerald NM, Lv G, Xing X, Jiang W-T, Li Z (2015) Adsorption of atenolol on kaolinite. Adv Mater Sci Eng 2015:897870. https://doi.org/10.1155/2015/897870

    Article  Google Scholar 

  20. Li WJCJoSL (2004) Effect of substituents on benzene Skeleton Vibrat IR Spectra. 21:244–239

  21. Chen C, Deng H, Wang C, Luo W, Huang D, Jin T (2021) Petal-like CoMoO4 clusters grown on carbon cloth as a binder-free Electrode for supercapacitor application. ACS Omega 6:19616–19622. https://doi.org/10.1021/acsomega.1c02166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhu M, Shao Q, Pi Y, Guo J, Huang B, Qian Y, Huang X (2017) Ultrathin vein-like iridium-tin nanowires with abundant oxidized Tin as high-performance ethanol oxidation electrocatalysts. Small 13:1701295. https://doi.org/10.1002/smll.201701295

    Article  CAS  Google Scholar 

  23. Ren G, Chen Q, Zheng J, Huang B, Qian Y (2018) N-doped carbon nanofibers aerogels derived from aramid as efficient electrocatalysts for oxygen reduction reaction in alkaline and acidic media. J Electroanal Chem 829:177–183. https://doi.org/10.1016/j.jelechem.2018.09.050

    Article  CAS  Google Scholar 

  24. Zuo L, Yu S, Zhou H, Tian X, Jiang J (2011) Th(IV) adsorption on mesoporous molecular sieves: effects of contact time, solid content, pH, ionic strength, foreign ions and temperature. J Radioanal Nuclear Chem 288:379–387. https://doi.org/10.1007/s10967-010-0930-9

    Article  CAS  Google Scholar 

  25. Salem NA, Ebrahim Yakoot SM (2016) Adsorption kinetic and mechanism studies of thorium on nitric acid oxidized activated carbon. Desalin Water Treat 57:28313–28322. https://doi.org/10.1080/19443994.2016.1184592

    Article  CAS  Google Scholar 

  26. Singha B, Das SK (2013) Adsorptive removal of Cu(II) from aqueous solution and industrial effluent using natural/agricultural wastes. Colloids Surf B: Biointerf 107:97–106. https://doi.org/10.1016/j.colsurfb.2013.01.060

    Article  CAS  Google Scholar 

  27. Shen W, An Q-D, Xiao Z-Y, Zhai S-R, Hao J-A, Tong Y (2020) Alginate modified graphitic carbon nitride composite hydrogels for efficient removal of Pb(II), Ni(II) and Cu(II) from water. Int J Biol Macromol 148:1298–1306. https://doi.org/10.1016/j.ijbiomac.2019.10.105

    Article  CAS  PubMed  Google Scholar 

  28. Milani SA, Karimi M (2017) Isotherm, kinetic and thermodynamic studies for Th(IV) sorption by amino group-functionalized titanosilicate from aqueous solutions. Korean J Chem Eng 34:1159–1169. https://doi.org/10.1007/s11814-016-0357-2

    Article  CAS  Google Scholar 

  29. Zhang N, Yuan L-Y, Guo W-L, Luo S-Z, Chai Z-F, Shi W-Q (2017) Extending the use of highly porous and functionalized MOFs to Th(IV) Capture. ACS Appl Mater Interf 9:25216–25224. https://doi.org/10.1021/acsami.7b04192

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of the Natural Science Foundation of Jiangxi (20202BABL213011) and College Students’ Innovative Entrepreneurial Training Plan Program (202210405016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunyan Wang or Chuanhong Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 258 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Q., Wang, C., Zhu, W. et al. Adsorption of Th(IV) on glutaraldehyde cross-linked N-(4-Aminobenzoyl)-ʟ-glutamic acid modified chitosan. J Radioanal Nucl Chem 332, 1953–1960 (2023). https://doi.org/10.1007/s10967-023-08840-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08840-5

Keywords

Navigation