Skip to main content
Log in

Novel Magnetic Chitosan Hydrogel Film, Cross-Linked with Glyoxal as an Efficient Adsorbent for Removal of Toxic Cr(VI) from Water

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A novel magnetic chitosan hydrogel film, cross-linked with glyoxal (Fe3O4NPs/CS/glyoxal), has been synthesized and used as an easily reusable adsorbent for 80–90 % removal of toxic Cr(VI) from water. A pseudo-second-order kinetic (with correlation coefficient R 2 > 0.99) is observed at room temperature. Characterization of the absorbent is carried out by X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy. The adsorption isotherm is well fitted in the Langmuir equation at different temperatures [R 2 >  0.99, and 0 < (Langmuir separation factor, R L) < 1]. So, our adsorbent, with the novelty of using glyoxal, and the ease of separation may be considered in Cr(VI) wastewater treatment technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hsu L.C., Wang S.L., Lin Y.C., Wang M.K., Chiang P.N., Liu J.C., Kuan W.H., Chen C.C., Tzou Y.M.: Cr(VI) removal on fungal biomass of Neurospora crassa: the importance of dissolved organic carbons derived from the biomass to Cr(VI) reduction. Environ. Sci. Technol. 44, 6202–6208 (2010)

    Article  Google Scholar 

  2. Krishna P.G., Gladis J.M., Rambabu U., Rao T.P., Naidu G.R.K.: Preconcentrative separation of Chromium(VI) species from chromium(III) by coprecipitation of its ethyl xanthate complex onto naphthalene. Talanta 63, 541–546 (2004)

    Article  Google Scholar 

  3. Ramos R.L., Martinez A.J., Coronado R.M.G.: Adsorption of chromium(VI) from aqueous solutions on activated carbon. Water Sci. Technol. 30, 191–197 (1994)

    Google Scholar 

  4. Basha S., Murthy Z.V.P., Jha B.: Biosorption of hexavalent chromium by chemically modified seaweed, Cystoseira indica. Chem. Eng. J. 137, 480–488 (2008)

    Article  Google Scholar 

  5. Xu Y., Zhao D.: Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles. Water Res. 41, 2101–2108 (2007)

    Article  Google Scholar 

  6. Monser L., Adhoum N.: Modified activated carbon for the removal of copper, zinc, chromium and cyanide from wastewater. Sep. Purif. Technol. 26, 137–146 (2002)

    Article  Google Scholar 

  7. Kongsricharoern N., Polprasert C.: Chromium removal by a bipolar electro-chemical precipitation process. Water Sci. Technol. 34, 109–116 (1996)

    Article  Google Scholar 

  8. Hafez A., El-Mariharawy S.: Design and performance of the two-stage/two-pass RO membrane system for chromium removal from tannery wastewater. Part 3. Desalination 165, 141–151 (2004)

    Article  Google Scholar 

  9. Modrzejewska Z., Kaminski W.: Separation of Cr(VI) on chitosan membranes. Ind. Eng. Chem. Res. 38, 4946–4950 (1999)

    Article  Google Scholar 

  10. Rengaraj S., Joo C.K., Kim Y., Yi J.: Kinetics of removal of chromium from water and electronic process wastewater by ion exchange resins: 1200H, 1500H and IRN97H. J. Hazard. Mater. 102, 257–275 (2003)

    Article  Google Scholar 

  11. Rengaraj S., Yeon K.H., Moon S.H.: Removal of chromium from water and wastewater by ion exchange resins. J. Hazard. Mater. 87, 273–287 (2001)

    Article  Google Scholar 

  12. Zhang D., Wei S., Kaila C., Su X., Wu J., Karki A.B., Young D.P., Guo Z.: Carbon-stabilized iron nanoparticles for environmental remediation. Nanoscale 2, 917–919 (2010)

    Article  Google Scholar 

  13. Mohan D., Singh K.P., Singh V.K.: Removal of hexavalent chromium from aqueous solution using low-cost activated carbons derived from agricultural waste materials and activated carbon fabric cloth. Ind. Eng. Chem. Res. 44, 1027–1042 (2005)

    Article  Google Scholar 

  14. Karthikeyan T., Rajgopal S., Miranda L.R.: Chromium(VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon. J. Hazard. Mater. 124, 192–199 (2005)

    Article  Google Scholar 

  15. Oliveira E.A., Montanher S.F., Andrade A.D., Nobrega J.A., Rollemberg M.C.: Equilibrium studies for the sorption of chromium and nickel from aqueous solutions using raw rice bran. Process Biochem. 40, 3485–3490 (2005)

    Article  Google Scholar 

  16. Singh K.K., Rastogi R., Hasan S.H.: Removal of Cr(VI) from wastewater using rice bran. J. Colloid Interface Sci. 290, 61–68 (2005)

    Article  Google Scholar 

  17. Baral S.S., Das S.N., Rath P.: Hexavalent chromium removal from aqueous solution by adsorption on treated sawdust. Biochem. Eng. J. 31, 216–222 (2006)

    Article  Google Scholar 

  18. Debnath S., Ghosh U.C.: Kinetics, isotherm and thermodynamics for Cr(III) and Cr(VI) adsorption from aqueous solutions by crystalline hydrous titanium oxide. J. Chem. Thermodyn. 40, 67–77 (2008)

    Article  Google Scholar 

  19. Bhaumik M., Maity A., Srinivasu V.V., Onyango M.S.: Removal of hexavalent chromium from aqueous solution using polypyrrole–polyaniline nanofibers. Chem. Eng. J. 181–182, 323–333 (2012)

    Article  Google Scholar 

  20. Bhaumik M., Setshedi K., Maity A., Onyango M.S.: Chromium(VI) removal from water using fixed bed column of polypyrrole/Fe3O4 nanocomposite. Sep. Purif. Technol. 110, 11–19 (2013)

    Article  Google Scholar 

  21. Altaş L., Kiliç A., Koçyiğit H., Işik M.: Adsorption of Cr(VI) on ureolytic mixed culture from biocatalytic calcification reactor. Colloids Surf. B 86, 404–408 (2011)

    Article  Google Scholar 

  22. Gupta V.K., Rastogi A., Nayak A.: Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material. J. Colloid Interface Sci. 342, 135–141 (2010)

    Article  Google Scholar 

  23. Sankararamakrishnan N., Dixit A., Iyengar L., Sanghi R.: Removal of hexavalent chromium using a novel cross linked xanthated chitosan. Bioresour. Technol. 97, 2377–2382 (2006)

    Article  Google Scholar 

  24. Kandile N.G., Nasr A.S.: Environment friendly modified chitosan hydrogels as a matrix for adsorption of metal ions, synthesis and characterization. Carbohydr. Polym. 78, 753–759 (2009)

    Article  Google Scholar 

  25. Wang L., Wang A.: Adsorption properties of Congo Red from aqueous solution onto N,O-carboxymethyl-chitosan. Bioresour. Technol. 99, 1403–1408 (2008)

    Article  Google Scholar 

  26. Ruiz M., Sastre A.M., Guibal E.: Palladium sorption on glutaraldehyde-crosslinked chitosan. React. Funct. Polym. 45, 155–173 (2000)

    Article  Google Scholar 

  27. Ngah W.S.W., Endud C.S., Mayanar R.: Removal of copper(II) ions from aqueous solution onto chitosan and cross-linking chitosan beads. React. Funct. Polym. 20, 181–190 (2002)

    Article  Google Scholar 

  28. Thinh N.N., Hanh P.T.B., Ha L.T.T., Anh L.N., Hoang T.V., Hoang V.D., Dang L.H., Khoi N.V., Lam T.D.: Magnetic chitosan nanoparticles for removal of Cr(VI) from aqueous solution. Mater. Sci. Eng. C 33, 1214–1218 (2013)

    Article  Google Scholar 

  29. Li N., Bai R.: Development of chitosan-based granular adsorbents for enhanced and selective adsorption performance in heavy metal removal. Water Sci. Technol. 54, 103–113 (2006)

    Article  Google Scholar 

  30. Shawky H.A.: Synthesis of ion-imprinting chitosan/PVA crosslinked membrane for selective removal of Ag(I). J. Appl. Polym. Sci. 114, 2608–2615 (2009)

    Article  Google Scholar 

  31. Martinez L., Agnely F., Leclerc B., Siepmann J., Cotte M., Geiger S., Couarraze G.: Cross-linking of chitosan and chitosan poly(ethylene oxide) beads: a theoretical treatment. Eur. J. Pharm. Biopharm. 67, 339–348 (2007)

    Article  Google Scholar 

  32. Monier M.: Adsorption of Hg2+, Cu2+ and Zn2+ ions from aqueous solution using formaldehyde cross-linked modified chitosan-thioglyceraldehyde schiff’s base. Int. J. Biol. Macromol. 50, 773–781 (2012)

    Article  Google Scholar 

  33. Hritcu D., Popa M.I., Popa N., Badescu V., Balan V.: Preparation and characterization of magnetic chitosan nanospheres. Turk. J. Chem. 33, 785–796 (2009)

    Google Scholar 

  34. Pohanish, R. P., Greene, Stanley A.: Wiley Guide to Chemical Incompatibilities. Wiley, New Jersey (2009)

  35. Pohanish R. P.: Sittig’s Handbook of Toxic and Hazardous Chemicals and Carcinogens. William Andrew, Waltham, MA (2011)

    Google Scholar 

  36. Ayres J.G., Harrison R.M., Nichols G.L., Maynard R.L.: Environmental Medicine. CRC Press, London (2010)

    Google Scholar 

  37. Lawley R., Curtis L., Davis J.: Food Safety Hazard Guidebook. Royal Society of Chemistry, New York (2012)

    Google Scholar 

  38. Robertson G.L.: Food Packaging: Principles and Practice. CRC Press, Florida (2012)

    Google Scholar 

  39. Chen D., Li W., Wu Y., Zhu Q., Lu Z., Du G.: Preparation and characterization of chitosan/montmorillonite magnetic microspheres and its application for the removal of Cr(VI). Chem. Eng. J. 221, 8–15 (2013)

    Article  Google Scholar 

  40. Hu X.J., Wang J.S., Liu Y.G., Li X., Zeng G.M., Bao Z.L., Zeng X.X., Chen A.W., Long F.: Adsorption of chromium(VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics. J. Hazard. Mater. 185, 306–314 (2011)

    Article  Google Scholar 

  41. Mohammadi R., Kassaee M.Z.: Sulfochitosan encapsulated nano-Fe3O4 as an efficient and reusable magnetic catalyst for green synthesis of 2-amino-4H-chromen-4-yl phosphonates. J. Mol. Catal. A: Chem. 380, 152–158 (2013)

    Article  Google Scholar 

  42. Pavia D.L., Lampman G.M., Kriz G.S.: Introduction to Organic laboratory techniques: A Microscale Approach. The Thomson Corporation, Belmont, CA (2007)

    Google Scholar 

  43. Pine S.H., Hendrickson J.B., Cram D.J., Hammono G.S.: Organic Chemistry. McGraw-Hill, New York (1980)

    Google Scholar 

  44. Yao K., Li J., Yao F., Yin Y.: Chitosan-Based Hydrogels: Functions and Applications. CRC Press, USA (2012)

    Google Scholar 

  45. Chuang Y.C., Chen D.H.: Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu(II) ions. J. Colloid Interface Sci. 238, 446–451 (2005)

    Article  Google Scholar 

  46. Li G.Y., Jiang Y., Huang K., Ding P., Chen J.: Preparation and properties of magnetic Fe3O4-chitosan nanoparticles. J. Alloys Compd. 466, 451–456 (2008)

    Article  Google Scholar 

  47. Zhi J., Wang Y., Lu Y., Ma J., Luo G.: In situ preparation of magnetic chitosan/Fe3O4 composite nanoparticles in tiny pools of water-in-oil microemulsion. React. Funct. Polym. 66, 1552–1558 (2006)

    Article  Google Scholar 

  48. Nakano Y., Bin Y., Bando M., Nakashima T., Okuno T., Kurosu H., Matsuo M.: Structure and mechanical properties of chitosan/poly(vinyl alcohol) blend films. Macromol. Symp. 258, 63–81 (2007)

    Article  Google Scholar 

  49. Benguella B., Benaissa H.: Cadmium removal from aqueous solutions by chitin: Kinetic and equilibrium studies. Water Res. 36, 2463–2474 (2002)

    Article  Google Scholar 

  50. Alzahrani E.: Fabrication and characterisation of chitosan-magnetic nanoparticles and its application for protein extraction. Int. J. Adv. Sci. Res. 4, 755–766 (2014)

    Google Scholar 

  51. Weckhuysen B.M., Wachs I.E., Schoonheydt R.A.: Surface chemistry and spectroscopy of chromium in inorganic oxides. Chem. Rev. 96, 3327–3349 (1996)

    Article  Google Scholar 

  52. Bayramoglu G., Celik G., Yılmaz M., Arica M.Y.: Modification of surface properties of Lentinus sajor-caju mycelia by physical and chemical methods: Evaluation of their Cr6+ removal efficiencies from aqueous medium. J. Hazard. Mater. 119, 219–229 (2005)

    Article  Google Scholar 

  53. Wu F.C., Tseng R.L., Juang R.S.: A review and experimental verification of using chitosan and its derivatives as adsorbents for selected heavy metals. J. Environ. Manag. 91, 798–806 (2010)

    Article  Google Scholar 

  54. Chang Y.C., Chang S.W., Chen D.H.: Magnetic chitosan nanoparticles: Studies on chitosan binding and adsorption of Co(II) ions. React. Funct. Polym. 66, 335–341 (2006)

    Article  Google Scholar 

  55. Zhang H., Tang Y., Cai D., Liu X., Wang X., Huang Q., Yu Z.: Hexavalent chromium removal from aqueous solution by algal bloom residue derived activated carbon: Equilibrium and kinetic studies. J. Hazard. Mater. 181, 801–808 (2010)

    Article  Google Scholar 

  56. Chu X.Z., Zhao Y.J., Kan Y.H., Zhang W.G., Zhou S.Y., Zhou Y.P., Zhou L.: Dynamic experiments and model of hydrogen and deuterium separation with micropore molecular sieve Y at 77K. Chem. Eng. J. 152, 428–433 (2009)

    Article  Google Scholar 

  57. Luo C., Wei R., Guo D., Zhang S., Yan S.: Adsorption behavior of MnO2 functionalized multi-walled carbon nanotubes for the removal of cadmium from aqueous solutions. Chem. Eng. J. 225, 406–415 (2013)

    Article  Google Scholar 

  58. Ho Y.S.: Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics 59, 171–177 (2004)

    Article  Google Scholar 

  59. Shukla S.R., Pai R.S., Shendarkar A.D.: Adsorption of Ni(II), Zn(II) and Fe(II) on modified coir fibres. Sep. Purif. Technol. 47, 141–147 (2006)

    Article  Google Scholar 

  60. Badruddoza A.Z.M., Shawon Z.B.Z., Daniel T.W.J, Hidajat K., Uddin M.S.: Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater. Carbohydr. Polym. 91, 322–332 (2013)

    Article  Google Scholar 

  61. Zuo X.J, Balasubramanian R.: Evaluation of a novel chitosan polymer-based adsorbent for the removal of chromium(III) in aqueous solutions. Carbohydr. Polym. 92, 2181–2186 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Z. Kassaee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirabedini, M., Kassaee, M.Z. & Poorsadeghi, S. Novel Magnetic Chitosan Hydrogel Film, Cross-Linked with Glyoxal as an Efficient Adsorbent for Removal of Toxic Cr(VI) from Water. Arab J Sci Eng 42, 115–124 (2017). https://doi.org/10.1007/s13369-016-2062-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2062-1

Keywords

Navigation