Skip to main content
Log in

Determination of the trace elements, radionuclides and REEs in the Brazilian stone waste and evaluation of sustainable use

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Stone waste generated in the processing of marble and granite may present potential for recycling. The objective this study was to determine the concentrations of natural radionuclides, trace elements, Sm and Dy in stone waste. To this end, neutron activation analysis (NAA) was performed. Concentrations of Ca, Mg, S, P and K indicate that this waste can be a promising alternative as an agricultural soil conditioner. Concentrations of Dy and Sm above the values found in the earth’s crust allow a glimpse of the use of stone waste for recycling these. Feasibility of use in agriculture and REE recycling exists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chiodi Filho C, Rodrigues EP (2009) Guia de aplicação de rochas em revestimentos. Projeto Bula / ABIROCHAS. São Paulo

  2. Careddu N, Siotto G, Siotto R, Tilocca G (2013) From landfill to water, land and life: the creation of the centre for stone materials aimed at secondary processing. Resour Policy 38:258–265

    Article  Google Scholar 

  3. Dino GA, Lasagna M, Clemente P, De Luca DA (2015) Laboratory characterization and pilot site tests of residual sludge from dimension stones for civil and environmental applications. Geol Soc, Lond 416:79–90

    Article  Google Scholar 

  4. Dino GA, Passarella I, Ajmone-Marsan F (2015) Quarry rehabilitation employing treated residual sludge from dimension stone working plant. Environ Earth Sci 73 11:7157–7164

    Article  Google Scholar 

  5. Karaca Z, Pekin A, Deliormanli AH (2012) Classification of dimension stone wastes. Environ Sci Pollut Res 6:2354–2362

    Article  Google Scholar 

  6. Chiodi Filho C (2019) Balanço das exportações, importações e consumo interno brasileiro de rochas ornamentais em 2018. Brasília

  7. Melamed R, Gaspar JC, Miekeley N (2007) Pó-de-Rocha como Fertilizante Alternativo para Sistemas de Produção Sustentáveis em Solos Tropicais. Série de Estudos e Documentos – SED 72. CETEM/MCT. 

  8. Graede T (2015) Metals used in high-tech products face future supply risks. PNAS. https://phys.org/print346672145.html Acessed 21 March 2022

  9. Dutta T, Kim KH, Uchimiya M, Kwon EE, Jeon BH, Deep A, Yun ST (2016) Global demand for rare earth resources and strategies for green mining. Environ Res 150:182–190. https://doi.org/10.1016/j.envres.2016.05.052

    Article  CAS  PubMed  Google Scholar 

  10. Sprecher B, Xiao Y, Walton A, Speight J, Harris R, Kleijn R, Visser G, Kramer GJ (2014) Life cycle inventory of the production of rare earths and the subsequent production of NdFeB rare earth permanent magnets. Environ Sci Technol 7:3951–3958

    Article  Google Scholar 

  11. Bogart JA, Lippincott CA, Carroll PJ, Schelter EJ (2015) An operationally simple method for separating the rare-earth elements neodymium and dysprosium. Angew Chem Int Ed 54:8222–8225

    Article  CAS  Google Scholar 

  12. Fang H, Cole BE, Qiao Y, Bogart JA, Cheisson T, Manor BC, Carroll PJ, Schelter EJ (2017) Electro-kinect separation of rare earth elements using a redox-active ligand. Angew Chem Int Ed 56:13450–13454

    Article  CAS  Google Scholar 

  13. Nguyen RT, Diaz LA, Imholte DD, Lister TE (2017) Economic assessment for recycling critical metals from hard disk drives using a comprehensive recovery process. JOM 9:1546–1552

    Article  Google Scholar 

  14. Associação Brasileira de Normas Técnicas (ABNT) (2004) NBR 10007: Amostragem de resíduos sólidos. Rio de Janeiro

  15. Associação Brasileira de Normas Técnicas (ABNT) (2003) NBR 15012. Rochas para Revestimentos de Edificações – Terminologia. Rio de Janeiro

  16. Alencar CRA (2013) Manual de caracterização, aplicação, uso e manutenção das principais rochas comerciais no Espírito Santo: rochas ornamentais. Instituto Euvaldo Lodi - Regional do Espírito Santo. Cachoeiro de Itapemirim - ES

  17. Calmon JL, Silva SAC (2006) Mármore e Granito no Espírito Santo: problemas ambientais e soluções. Agência Nacional de Águas – ANA. Instituto Brasileiro de Mineração – IBRAM. Avaiable https://www.ana.gov.br Acessed 13 January 2022

  18. Moreira JMS, Freire MN, Holanda JNF (2003) Utilização de resíduo de serragem de granito proveniente do estado do Espírito Santo em cerâmica vermelha. Cerâmica 49:262–267

    Article  CAS  Google Scholar 

  19. Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA (2009) Manual de análises químicas de solos, plantas e fertilizantes, 2 edn. Brasília – DF

  20. Ziervogel K, Bohling B (2003) Sedimentological parameters and erosion behaviour of submarine coastal sediments in the south-western Baltic Sea. Geo-Mar Lett 23:43–52. https://doi.org/10.1007/s00367-003-0123-4

    Article  Google Scholar 

  21. Bellido AVB (1989) Nêutron activation analysis of ancient Egyptian Pottery. Thesis - Departament of Chemistry, University of Manchester, England

  22. Bellido AVB, Arezzo BC, Latini RM (1994) Guia de Trabalhos Práticos de Radioquímica. UFF, Departamento de Físico-Química. Niterói, Rio de Janeiro

    Google Scholar 

  23. Babisk MP, Rocha JC, Louro LHL, Silva MHP, Avaiable (2009) http://mineralis.cetem.gov.br/handle/cetem/1485 Acessed 13 January 2022

  24. Abukersh SA, Fairfield CA (2011) Recycled aggregate concrete produced with red granite dust as a partial cement replacement. Constr Build Mater 10:4088–4094. https://doi.org/10.1016/j.conbuildmat.2011.04.047

    Article  Google Scholar 

  25. Rodrigues R, de Brito J, Sardinha M (2015) Mechanical properties of structural concrete containing very fine aggregates from marble cutting sludge. Constr Build Mater 77:349–356. https://doi.org/10.1016/j.conbuildmat.2014.12.104

    Article  Google Scholar 

  26. SBCS. Sociedade Brasileira de Ciência do Solo (2004) Manual de Adubação e Calagem para os Estados do Rio Grande do sul e Santa Catarina. Porto Alegre, RS

  27. Salami B, Higuchi P, Silva ACda, Ferreira TS, Marcon AK, Buzzi JrF, Bento MA (2014) Influência de variáveis ambientais na dinâmica do componente arbóreo em um fragmento de floresta Ombrófila Mista em Lages. SC Sci For 42(102):197–207

    Google Scholar 

  28. Silva RC, Pereira JM, Araújo QR, Pires AJV, Del Rei AJ (2007) Alterações nas propriedades químicas e físicas de um chernossolo com diferentes coberturas vegetais. Rev Bras de Ciênc do Solo 31(1):101–107

    Article  Google Scholar 

  29. Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA (2010) Conceitos de fertilidade do solo e manejo adequado para as regiões tropicais. Campinas, SP

  30. Abreu CH Jr, Muraoka T, Lavorante AF, Alvarez FC (2000) Condutividade elétrica, reação do solo e acidez potencial em solos adubados com composto de lixo. Rev Bras Ci Solo 24:635–647. https://doi.org/10.1590/S0100-06832000000300016

    Article  CAS  Google Scholar 

  31. Rosolem CA, Santos FP, Foloni JSS, Calonego JC (2006) Potássio no solo em consequência da adubação sobre a palha de milheto e chuva simulada. Pesqui Agropecu Bras 41:1033–1040

    Article  Google Scholar 

  32. Werle R, Garcia RA, Rosolem CA (2008) Lixiviação de potássio em função da textura e da disponibilidade do nutriente no solo. Rev Bras de Ciênc do Solo 32:2297–2305

    Article  CAS  Google Scholar 

  33. Oliveira RH, Rosolem CA, Trigueiro RM (2004) Importância do fluxo de massa e difusão no suprimento de potássio ao algodoeiro como variável de água e potássio no solo. Rev Bras de Ciênc do Solo 28:439–445

    Article  CAS  Google Scholar 

  34. Moreira A, Carvalho JG, Evangelista AR (1999) Influência da relação ca:mg do corretivo na nodulação, produção e composição mineral da alfafa. Pesqui Agropecu Bras 34(2):249–255

    Article  Google Scholar 

  35. Salvador JT, Carvalho TC, Lucchesi LAC (2011) Relações cálcio e magnésio presentes no solo e teores foliares de macronutrientes. Ciênc Agrárias e Ambient 9(1):27–32

    Google Scholar 

  36. Hernandez RJM, Silveira RI (1998) Efeitos da saturação por bases, relações ca:mg no solo e níveis de fósforo sobre a produção de material seco e nutrição mineral do milho (Zea mays L.). Sci Agric 1:55

    Google Scholar 

  37. Saygili A (2015) Use of waste marble dust for stabilization of clayey soil. Mater Sci 21:601–606. https://doi.org/10.5755/j01.ms.21.4.11966

    Article  Google Scholar 

  38. Ibrahim HH, Alshkane YM, Mawlood YI, Noori KMG, Hasan AM (2020) Improving the geotechnical properties of high expansive clay using limestone powder. Innov Infrastruct Solut 5:1–11. https://doi.org/10.1007/s41062-020‐00366‐z

    Article  Google Scholar 

  39. Ogila WAM (2016) The impact of natural ornamental limestone dust on swelling characteristics of high expansive soils. Environ Earth Sci 75:1493. https://doi.org/10.1007/s12665-016‐6305‐y

    Article  Google Scholar 

  40. Pastor JL, Tomás R, Cano M, Riquelme A, Gutiérrez E (2019) Evaluation of the improvement effect of limestone powder waste in the stabilization of swelling clayey soil. Sustainbility 11:679. https://doi.org/10.3390/su11030679

    Article  CAS  Google Scholar 

  41. Sabat AK, Muni PK (2015) Effects of limestone dust on geotechnical properties of an expansive soil. Int J Appl Eng Res 10:37724–37730

    Google Scholar 

  42. Igwe O, Adepehin EJ (2017) Alternative approach to clay stabilization using granite and dolerite dusts. Geotech Geol Eng 35:1657–1664. https://doi.org/10.1007/s10706-017‐0200‐5

    Article  Google Scholar 

  43. Sivrikaya O, Kıyıldı KR, Karaca Z (2014) Recycling waste from natural stone processing plants to stabilise clayey soil. Environ Earth Sci 71:4397–4407. https://doi.org/10.1007/s12665-013‐2833‐x

    Article  CAS  Google Scholar 

  44. Tozsin G, Arol AI, Oztas T, Kalkan E (2014) Using marble wastes as a soil amendment for acidic soil neutralization. J Environ Manag 133:374–377. https://doi.org/10.1016/j.jenvman.2013.12.022

    Article  CAS  Google Scholar 

  45. Zagożdżon PP (2008) Basalt powder in agricultural use. Min Sci 10:133–142. https://doi.org/10.1007/s12665-013-2833-x

    Article  CAS  Google Scholar 

  46. Dino GA, Passarella I, Ajmone-Marsan F (2014) Quarry rehabilitation employing treated residual sludge from dimension stone working plant. Environ Earth Sci 73:7157–7164. https://doi.org/10.1007/s12665‐014‐3895‐0

    Article  Google Scholar 

  47. United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and effects of ionizing radiation (2000) In: United Nations Scientific Committee on the Effects of Atomic Radiation. V.1 New York Avaiable https://www.unscear.org/unscear/en/publications/2000_1 Acessed 24 May 2021

  48. Jacomino VMF (2008) Avaliação do uso do rejeito gerado pelo beneficiamento da rocha fosfatada na agricultura da região do Cerrado. Minas Gerais: https://www.gov.br/mme/pt-br/assuntos/secretarias/geologia-mineracao-e-transformacao-mineral/desenvolvimento-sustentavel-na-mineracao-1 Acessed 3 May 2022

  49. Environmental Protection Agency (EPA) U.S (1998) Background information document: statistical procedures for certifying Phosphogypsum for entry into commerce, as required by Sect. 61.207 of 40 CFR Part 61, Subpart R. EPA 402-R-98-008, Washington, DC

  50. International Commission on Radiological Protection – ICRP (1995) Age-dependent Doses to Members of Public: Part 3. Ingestion Doses Coefficients, vol 25(1). https://crp.org/publication.asp?id=ICRP%20Publication%2069 Acessed 23 May 2021

  51. Liv DHF, Lipták BG (1997) Environmental engineer’s handbook, second. Lewis Publishers, New York

    Google Scholar 

  52. Burnett WC, Hull CD (1996) Problems and possible remedies concerning NORM in by-product gypsum produced by the phosphate industry. Health Phys Soc Meet 29:1–12

    Google Scholar 

  53. Borges RC, Ribeiro FCA, Lauria DC, Bellido AVB (2013) Radioactive characterization of phosphogypsum from Imbituba, Brazil. J Environ Radioact 126:188–195. https://doi.org/10.1016/j.jenvrad.2013.07.020

    Article  CAS  PubMed  Google Scholar 

  54. Shen ZY, Han SY, Fu LC, Hsiao PY, Lau YC, Chang SJ (2019) Deep convolution neural network with scene-centric and object-centric information for object detection. Image Vis Comput 85:14–25. https://doi.org/10.1016/j.imavis.2019.03.004

    Article  Google Scholar 

  55. Dueñas C, Fernández MC, Cañete S, Pérez M (2010) Radiological impacts of natural radioactivity from phosphogypsum piles in Huelva (Spain). Radiat Meas 45:242–246. https://doi.org/10.1016/j.radmeas.2010.01.007

    Article  CAS  Google Scholar 

  56. Mortvedt JJ and Sikora FJ (1992) Heavy metals, radionuclides, and fluorides in phosphorus fertilizers. In: Sikora FJ (ed) Future Directions for Agricultural Research (pp 69-74). TVA Bulletin Y-224. Muscle Shoals, Alabama.

  57. Haridasan P (2013) Managing exposure to natural sources: international standards and new challenges. In: Proceedings of the Seventh Naturally Occurring Radioactive Material (NORM VII) (pp 31–48). Beijing: IAEA, Vienna

  58. CETESB - Companhia de Tecnologia de Saneamento Ambiental. Norma (1999) Aplicação de lodos de sistemas de tratamento biológico em áreas agrícolas – Critérios para projeto e operação. São Paulo. https://supremoambiental.com.br/wp-content/uploads/2018/07/norma-tecnica-cetesb-1999-aplicacao-de-lodos-de-tratamento-biologico-em-areas-agricolas.pdf Acessed 13 January 2022

  59. California Department of Food and Agriculture (CDFA) (1997) Analyses of selected metals in fertilizer samples collected. Steve Wong, Sacramento, CA

    Google Scholar 

  60. Adeel M, Leeb JY, Zainc M, Rizwand M, Nawabe A, Ahmadf MA, Shafiqg M, Yia H, Jilanih -G, Javedi R, Hortonj R, Ruia Y, Daniel CW, Xing B (2019) Cryptic footprints of rare earth elements on natural resources and living organisms. Environ Intern 127:785–800. https://doi.org/10.1016/j.envint.2019.03.022

    Article  CAS  Google Scholar 

  61. McLennan SM (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem Geophys Geosyst 2:4. https://doi.org/10.1029/2000GC000109

    Article  Google Scholar 

  62. Rudnick RI, Gao S (2003) Composition of the Continental Crust. Treatise On Geochemistry, [s.l.], p.1–64. Avaiable https://www.geol.umd.edu/~rudnick/PDF/Rudnick_Gao_Treatise Acessed 23 April 2021

  63. Li J, Hong M, Yin X, Liu J (2010) Effects of the accumulation of the rare earth elements on soil macrofauna community. J Rare Earths 28:957–964. https://doi.org/10.1016/s1002-0721(09)60233-7

    Article  CAS  Google Scholar 

  64. Zhang QH, Tong LG, Cheng L, Zhu J, Wang Q (2012) Charateristics of REE distribution in the surface soil of the farmland in wastewater irrigation area. Acta Agric Univ Jangxiensis 34:614–618

    CAS  Google Scholar 

  65. Guo H, Zhang B, Wang G, Shen Z (2010) Geochemical controls on arsenic and rare earth elements approximately along a groundwater flow path in the shallow aquifer of the Hetao Basin, Inner Mongolia. Chem Geol 270:117–125. https://doi.org/10.1016/j.chemgeo.2009.11.010

    Article  CAS  Google Scholar 

  66. Wang L, Liang T (2015) Geochemical fractions of rare earth elements in soil around a mine tailing in Baotou. China Sci Rep 5:12483.

    Article  PubMed  Google Scholar 

  67. Lapido-Loureiro DE (2008) Fertilizantes e sustentabilidade: o fósforo na agricultura brasileira, Série de Estudos e Documentos, CETEM. https://www.cetem.gov.br Acessed 3 May 2022

  68. Borges RC, Fávaro DIT, Caldas VG, Lauria DC, Bellido AVB (2016) Instrumental neutron activation analysis, gamma spectrometry and geographic information system techniques in the determination and mapping of rare earth element in phosphogypsum stacks. Environ Earth Sci 75:705. https://doi.org/10.1007/s12665-016-5468-x

    Article  CAS  Google Scholar 

  69. Bispo FHA, Menezes MD, Fontana A, Sarkis JES, Gonçalves CM, Carvalho TS, Curi N, Guilherme LRG (2021) Rare earth elements (REEs): geochemical patterns and contamination aspects in Brazilian benchmark soils. Environ Poll. https://doi.org/10.1016/j.envpol.2021.117972

    Article  Google Scholar 

  70. Fouquet Y, Martel-Jantin B (2014) Rare and strategic metals. In: Fouquet Y, Lacroix D (eds) Deep marine mineral resources. Springer, New York, pp 55–64

    Chapter  Google Scholar 

  71. McLellan B, Corder G, Golev A, Ali S (2014) Sustainability of the rare earths industry. Proced Environ Sci 20:280–287

    Article  Google Scholar 

  72. Lynas Corporation. Mount Weld Mineral Resource and Ore Reserve Update (2015) https://www.lynascorp.com/PublishingImages/Pages/Mt-WeldResources-and-Reserves/ASX%20Announcement%20-%20Ore%20Reserves%20and%20Resources%20FINAL%20051015.pdf Acessed 21 March 2020

  73. Swain N, Mishra S (2019) A review on the recovery and separation of rare earths and transition metals from secondary resources. J Clean Prod 220:884–898. https://doi.org/10.1016/j.jclepro.2019.02.094

    Article  CAS  Google Scholar 

  74. Davris P, Balomenos E, Taxiarchou M, Panias D, Paspaliaris I (2017) Current and alternative routes in the production of rare earth elements Aktuelle und alternative Routen bei der Herstellung von Metallen der Seltenen Erden. BHM Berg- und Hydrometall Monatshefte 162:245–251. https://doi.org/10.1007/s00501-017-0610-y

    Article  CAS  Google Scholar 

  75. Kurkinen S, Virolainen S, Sainio T (2021) Recovery of rare earth elements from phosphogypsum waste in resin-in-leach process by eluting with biodegradable complexing agents. Hydrometallurgy. https://doi.org/10.1016/j.hydromet.2021.105569

    Article  Google Scholar 

  76. Chu S (2011) Critical materials strategy. DIANE Publishing, Darby

    Google Scholar 

  77. Quinn J, Soldenhoff K, Stevens G, Lengkeek N (2015) Solvent extraction of rare earth elements using phosphonic/phosphinic acid mixtures. Hydrometallurgy 157:298–305

    Article  CAS  Google Scholar 

  78. Andrade RHP (2014) Terras raras (Handbook). Sumário Mineral. DNPM/MS, Brasília

    Google Scholar 

  79. BRAZIL. Senado Federal (2013) Terras Raras: Estratégias para o Futuro. Revista Em Discussão. Ano 4. n. 17. Brasília

  80. Mechi A, Sanches DL (2010) Impactos ambientais da mineração no Estado de São Paulo. Estudos Avançados 24:209–220. https://doi.org/10.1590/S0103-40142010000100016

    Article  Google Scholar 

  81. Dourojeanni M (2013) Nuvens negras sobre a Amazônia brasileira. O Eco, Rio de Janeiro, 15 Jul. 2013. Avaiable on: https://oeco.org.br/colunas/27378-nuvens-negras-sobre-a-amazonia-brasileira Acessed 21 Mar. 2021

  82. Santos dosAJG (2005) Regulamentação e decisões na avaliação de impacto ambiental dos resíduos contendo radioatividade. Instituto de Pesquisas Energéticas e Nucleares. International Nuclear Atlantic Conference - INAC 2005, Santos, SP. 2005. Avaiable https://www.ipen.br/biblioteca/2005/inac/10720 Acessed 18 May 2021

  83. Associação Brasileira da Indústria de Rochas Ornamentais (ABIROCHAS) (2016) Rochas Ornamentais no Século XXI. Brasília

  84. Geological Survey US, Mineral Commodity Summaries (2022) Avaiable https://pubs.er.usgs.gov/publication/mcs Acessed 20 August 2022

  85. Marini OJ, Botelho NF, Rossi PH (1992) Elementos terras raras em granitoides da província estanífera de Goiás. Rev Bras de Geociências 22:61–72

    Article  Google Scholar 

  86. Talan D, Huang Q (2022) A review of environmental aspect of rare earth element extraction processes and solution purification techniques. Miner Eng. https://doi.org/10.1016/j.mineng.2022.107430

    Article  Google Scholar 

  87. Mwalongo DA, Haneklaus NH, Lisuma JB, Kivevele TT, Mtei KM (2022) Uranium in phosphate rocks and mineral fertilizers applied to agricultural soils in East Africa. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-24574

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) (Proc. E-26/204.013/2022), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the scholarship for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata Coura Borges.

Ethics declarations

Conflict of interest

I read and understood the Journal Radioanalytical and Nuclear Chemistry policy on declaration of interests and declare the following: I declare Organizational non Conflicts of interest: I have one grant from CAPES federal agency, public non-profit foundation, and serve from my University as post doctor. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borges, R.C., Mahler, C.F., Ehrlich, M. et al. Determination of the trace elements, radionuclides and REEs in the Brazilian stone waste and evaluation of sustainable use. J Radioanal Nucl Chem 332, 761–774 (2023). https://doi.org/10.1007/s10967-023-08807-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08807-6

Keywords

Navigation