Skip to main content
Log in

Preparation of zero-valent iron-nickle bimetallic composite for Se(IV) adsorption from aqueous solution

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

79Se is one of the important radionuclides in the safety evaluation of high-level radioactive waste repository due to its long half-life and highly fissionable radioactivity. Nanoscale zero valent iron-nickel bimetallic composite (Fe0/Ni0) was fabricated by liquid phase reduction method for Se(IV) adsorption from aqueous solution. The effects of pH, solid–liquid ratio, time, temperature, initial concentration of Se(IV) on the adsorption of Se(IV) by Fe0/Ni0 were investigated. Fe0/Ni0 was characterized by SEM, XPS, XRD, FT-IR, BET and Zeta potential, and the mechanism of removing Se(IV) was analyzed. The results showed that Fe0/Ni0 had a good removal effect on Se(IV). When pH was 3.5, the solid–liquid ratio was 0.3 g L−1, the reaction time was 40 min, the maximum adsorption capacity of Se(IV) by Fe0/Ni0 could reach 180 mg g−1. The research results can provide a theoretical basis for the treatment of wastewater containing Se(IV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Larimi Y, Mallah M, Moosavian M, Safdari J (2013) Fabrication of a magmolecule using nanoparticle and evaluation of its adsorption capacity for selenium ions from nuclear wastewater. J Radioanal Nucl Chem 298:1511–1518

    Article  CAS  Google Scholar 

  2. Ippolito J, Scheckel K, Barbarick K (2009) Selenium adsorption to aluminum-based water treatment residuals. J Colloid Interface Sci 338:48–55

    Article  CAS  PubMed  Google Scholar 

  3. Li H, Zhou M, Guan E, Li Z (2021) Preparation of wheat bran-titanium dioxide (TiO2) composite and its application for selenium adsorption. J Cereal Sci 99:103230

    Article  CAS  Google Scholar 

  4. Li D, Yan W, Guo X, Tian Q, Xu Z, Zhu L (2020) Removal of selenium from caustic solution by adsorption with Ca-Al layered double hydroxides. Hydrometallurgy 191:105231

    Article  CAS  Google Scholar 

  5. Ma Z, Shan C, Liang J, Tong M (2018) Efficient adsorption of Selenium(IV) from water by hematite modified magnetic nanoparticles. Chemosphere 193:134–141

    Article  CAS  PubMed  Google Scholar 

  6. Wang Y, Gu Z, Yang J, Liao J, Yang Y, Liu N, Tang J (2014) Amidoxime-grafted multiwalled carbon nanotubes by plasma techniques for efficient removal of uranium(VI). Appl Surf Sci 320:10–20

    Article  CAS  Google Scholar 

  7. Bakather O, Kayvani F, Ihsanullah K, Nasser M, Atieh M (2017) Enhanced adsorption of selenium ions from aqueous solution using iron oxide impregnated carbon nanotubes. Bioinorg Chem Appl 2017:4323619

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jordan N, Franzen C, Lützenkirchen J, Foerstendorf H, Hering D, Weiss S, Heim K, Brendler V (2018) Adsorption of selenium(vi) onto nano transition alumina. Environ Sci: Nano 5:1661–1669

    CAS  Google Scholar 

  9. Zhifen W, Hui Z, Rongjing T, Qifeng J, Rong H, Peng R, Boping L, Mingbiao L (2022) An investigation of Re(VII) and Se(IV) adsorption by Tamusu clay: effect of time, pH, ionic strength, temperature and organic acids. J Radioanal Nucl Chem 331:3461–3473

    Article  Google Scholar 

  10. Ervanne H, Hakanen M, Lehto J (2015) Selenium sorption on clays in synthetic groundwaters representing crystalline bedrock conditions. J Radioanal Nucl Chem 307:1365–1373

    Article  Google Scholar 

  11. Wang S, Xiao K, Mo Y, Yang B, Vincent T, Faur C, Guibal E (2020) Selenium(VI) and copper(II) adsorption using polyethyleneimine-based resins: Effect of glutaraldehyde crosslinking and storage condition. J Hazard Mater 386:121637

    Article  CAS  PubMed  Google Scholar 

  12. Wei J, Shen B, Ye G, Wen X, Song Y, Wang J, Meng X (2021) Selenium and arsenic removal from water using amine sorbent, competitive adsorption and regeneration. Environ Pollut 274:115866

    Article  CAS  PubMed  Google Scholar 

  13. Rodríguez-Martínez C, González-Acevedo Z, Olguín M, Frías-Palos H (2015) Adsorption and desorption of selenium by two non-living biomasses of aquatic weeds at dynamic conditions. Clean Technol Envir 18:33–44

    Article  Google Scholar 

  14. Chen M, An M (2012) Selenium adsorption and speciation with Mg-FeCO3 layered double hydroxides loaded cellulose fibre. Talanta 95:31–35

    Article  CAS  PubMed  Google Scholar 

  15. Jan B, Tsai S, Li Y (2014) Determination of sorption and diffusion parameters of Se(IV) on crushed granite. J Radioanal Nucl Chem 301:365–371

    Article  CAS  Google Scholar 

  16. Jordan N, Ritter A, Foerstendorf H, Scheinost A, Weiß S, Heim K, Grenzer J, Mücklich A, Reuther H (2013) Adsorption mechanism of selenium(VI) onto maghemite. Geochim Cosmochim Acta 103:63–75

    Article  CAS  Google Scholar 

  17. Ling L, Pan B, Zhang W (2015) Removal of selenium from water with nanoscale zero-valent iron: mechanisms of intraparticle reduction of Se(IV). Water Res 71:274–281

    Article  CAS  PubMed  Google Scholar 

  18. Qiu Z, Tian Q, Zhang T, Yang D, Qiu F (2020) Fabrication of dynamic zero-valent iron/MnO2 nanowire membrane for efficient and recyclable selenium separation. Sep Purif Technol 230:115847

    Article  CAS  Google Scholar 

  19. Abdolmohammad-Zadeh H, Jouyban A, Amini R, Sadeghi G (2013) Nickel-aluminum layered double hydroxide as a nano-sorbent for the solid phase extraction of selenium, and its determination by continuous flow HG-AAS. Microchim Acta 180:619–626

    Article  CAS  Google Scholar 

  20. Zhu F, Liu T, Zhang Z, Liang W (2021) Remediation of hexavalent chromium in column by green synthesized nanoscale zero-valent iron/nickel: factors, migration model and numerical simulation. Ecotoxicol Environ Saf 207:111572

    Article  CAS  PubMed  Google Scholar 

  21. Danish M, Gu X, Lu S, Brusseau M, Ahmad A, Naqvi M, Farooq U, Zaman W, Fu X, Miao Z (2017) An efficient catalytic degradation of trichloroethene in a percarbonate system catalyzed by ultra-fine heterogeneous zeolite supported zero valent iron-nickel bimetallic composite. Appl Catal A Gen 531:177–186

    Article  CAS  PubMed  Google Scholar 

  22. Xia X, Hua Y, Huang X, Ling L, Zhang W (2017) Removal of arsenic and selenium with nanoscale zero-valent iron (nZVI). Acta Chim Sinica 75:594–601

    Article  CAS  Google Scholar 

  23. Adio S, Omar M, Asif M, Saleh T (2017) Arsenic and selenium removal from water using biosynthesized nanoscale zero-valent iron: a factorial design analysis. Process Saf Environ 107:518–527

    Article  CAS  Google Scholar 

  24. Chen Y, Zhang J, Xu H (2022) Exploration of the degradation mechanism of ciprofloxacin in water by nano zero-valent iron combined with activated carbon and nickel. J Mol Liq 345:118212

    Article  CAS  Google Scholar 

  25. Tan X, Fang M, Chen C, Yu S, Wang X (2008) Counterion effects of nickel and sodium dodecylbenzene sulfonate adsorption to multiwalled carbon nanotubes in aqueous solution. Carbon 46:1741–1750

    Article  CAS  Google Scholar 

  26. Cui W, Li P, Wang Z, Zheng S, Zhang Y (2018) Adsorption study of selenium ions from aqueous solutions using MgO nanosheets synthesized by ultrasonic method. J Hazard Mater 341:268–276

    Article  PubMed  Google Scholar 

  27. Wu P, Wang Y, Hu X, Yuan D, Liu Y, Liu Z (2019) Synthesis of magnetic graphene oxide nanoribbons composite for the removal of Th(IV) from aqueous solutions. J Radioanal Nucl Chem 319:1111–1118

    Article  CAS  Google Scholar 

  28. Wu P, Wang Y, Li Y, Hu X, Xiu T, Yuan D, Liu Y, Wu Z, Liu Z (2019) Adsorption of Th(IV) from aqueous solution by the graphene oxide nanoribbons/chitosan composite material. J Radioanal Nucl Chem 322:553–559

    Article  CAS  Google Scholar 

  29. Hu X, Wang Y, Yang J, Li Y, Wu P, Zhang H, Yuan D, Liu Y, Wu Z, Liu Z (2020) Synthesis of graphene oxide nanoribbons/chitosan composite membranes for the removal of uranium from aqueous solutions. Front Chem Sci Eng 14(6):1029–1038

    Article  CAS  Google Scholar 

  30. Yu S, Yin L, Pang H, Wu Y, Wang X, Zhang P, Hu B, Chen Z, Wang X (2018) Constructing sphere-like cobalt-molybdenum-nickel ternary hydroxide and calcined ternary oxide nanocomposites for efficient removal of U(VI) from aqueous solutions. Chem Eng J 352:360–370

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (11465002, 11765002, 41761090), Open Project Foundation of Stake key Laboratory of Nuclear Resources and Environment (East China University of Technology) (2022NRE30), and the Scientific and Technical Project of the Educational Department in Jiangxi Province (GJJ200715).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyan Li or Zhanggao Le.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Fu, X., Zhou, Q. et al. Preparation of zero-valent iron-nickle bimetallic composite for Se(IV) adsorption from aqueous solution. J Radioanal Nucl Chem 332, 785–796 (2023). https://doi.org/10.1007/s10967-023-08789-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08789-5

Keywords

Navigation