Skip to main content
Log in

Efficient removal of iodide/iodate from aqueous solutions by Purolite A530E resin

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Efficient removal of iodide (I) and iodate (IO3) from aqueous solution is highly desirable for waste disposal and remediation of radioiodine contamination. We report here a bifunctional anion exchange resin Purolite A530E for the effective I/IO3 adsorption, which shows a priority anion-exchange affinity for I (99%) over IO3 (9.7%). The maximum adsorption capacity for I is 275.16 mg·g−1 fitted by the Langmuir isotherm model, much higher than most adsorbents. Furthermore, Purolite A530E exhibits great selectivity for I over competing anions, which endows the resin with promising I remediation that over 99% I can be removed from simulated Hanford groundwater (HGW).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Riley BJ, Vienna JD, Strachan DM, McCloy JS, Jerden JL (2016) Materials and processes for the effective capture and immobilization of radioiodine: A review. J Nucl Mater 470:307–326

    CAS  Google Scholar 

  2. Huve J, Ryzhikov A, Nouali H, Lalia V, Auge G, Daou TJ (2018) Porous sorbents for the capture of radioactive iodine compounds: a review. RSC Adv 8:29248–29273

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hirota M, Higaki S, Ito S, Ishida Y, Terao K (2021) Effects of 2-hydroxypropyl α-cyclodextrin on the radioactive iodine sorption on activated carbon. J Radioanal Nucl Chem 328:659–667

    CAS  Google Scholar 

  4. Muhire C, Tesfay Reda A, Zhang D, Xu X, Cui C (2022) An overview on metal Oxide-based materials for iodine capture and storage. Chem Eng J 431:133816

    CAS  Google Scholar 

  5. Li D, Kaplan DI, Sams A, Powell BA, Knox AS (2018) Removal capacity and chemical speciation of groundwater iodide (I-) and iodate (IO3-) sequestered by organoclays and granular activated carbon. J Environ Radioact 192:505–512

    CAS  PubMed  Google Scholar 

  6. Ikari M, Matsui Y, Suzuki Y, Matsushita T, Shirasaki N (2015) Removal of iodide from water by chlorination and subsequent adsorption on powdered activated carbon. Water Res 68:227–237

    CAS  PubMed  Google Scholar 

  7. Li D, Kaplan DI, Price KA, Seaman JC, Roberts K, Xu C, Lin P, Xing W, Schwehr K, Santschi PH (2019) Iodine immobilization by silver-impregnated granular activated carbon in cementitious systems. J Environ Radioact 208–209:106017

    PubMed  Google Scholar 

  8. Inglezakis VJ, Satayeva A, Yagofarova A, Tauanov Z, Meiramkulova K, Farrando-Perez J, Bear JC (2020) Surface Interactions and Mechanisms Study on the Removal of Iodide from Water by Use of Natural Zeolite-Based Silver Nanocomposites. Nanomaterials (Basel) 10:1156

    CAS  PubMed  Google Scholar 

  9. Pham TCT, Docao S, Hwang IC, Song MK, Choi DY, Moon D, Oleynikov P, Yoon KB (2016) Capture of iodine and organic iodides using silica zeolites and the semiconductor behaviour of iodine in a silica zeolite. Energ Environ Sci 9:1050–1062

    CAS  Google Scholar 

  10. Chen J, Wang J, Gao Q, Zhang X, Liu Y, Wang P, Jiao Y, Zhang Z, Yang Y (2020) Enhanced removal of I- on hierarchically structured layered double hydroxides by in suit growth of Cu/Cu2O. J Environ Sci (China) 88:338–348

    CAS  PubMed  Google Scholar 

  11. Kang J, Cintron-Colon F, Kim H, Kim J, Varga T, Du Y, Qafoku O, Um W, Levitskaia TG (2022) Removal of iodine (I- and IO3-) from aqueous solutions using CoAl and NiAl layered double hydroxides. Chem Eng J 430:132788

    CAS  Google Scholar 

  12. Chen J, Jiao Y, Chen K, Wang P, Wang J, Mao P, Jiang J, He M, Liu Y, Gong C, Yang Y (2021) Hierarchically mesoporous mixed copper oxide/calcined layered double hydroxides composites for iodide high-efficiency elimination. J Solid State Chem 303:122509

    CAS  Google Scholar 

  13. Lin Y, Jiang X, Kim ST, Alahakoon SB, Hou X, Zhang Z, Thompson CM, Smaldone RA, Ke C (2017) An elastic hydrogen-bonded cross-linked organic framework for effective iodine capture in water. J Am Chem Soc 139:7172–7175

    CAS  PubMed  Google Scholar 

  14. Liu X, Zhang A, Ma R, Wu B, Wen T, Ai Y, Sun M, Jin J, Wang S, Wang X (2022) Experimental and theoretical insights into copper phthalocyanine-based covalent organic frameworks for highly efficient radioactive iodine capture. Chinese Chem Lett 33:3549–3555

    CAS  Google Scholar 

  15. Liu Q, Ma J, Dong Y (2011) Highly efficient iodine species enriching and guest-driven tunable luminescent properties based on a cadmium(II)-triazole MOF. Chem Commun (Camb) 47:7185–7187

    CAS  PubMed  Google Scholar 

  16. Xu W, Zhang W, Kang J, Li B (2019) Facile synthesis of mesoporous Fe-based MOFs loading bismuth with high speed adsorption of iodide from solution. J Solid State Chem 269:558–565

    CAS  Google Scholar 

  17. Liu X, Verma G, Chen Z, Hu B, Huang Q, Yang H, Ma S, Wang X (2022) Metal-organic framework nanocrystals derived hollow porous materials: synthetic strategies and emerging applications. The Innovation :100281

    Google Scholar 

  18. Yang X, Liu X, Liu Y, Wang X, Chen Z, Wang X (2022) Optimizing iodine capture performance by metal-organic framework containing with bipyridine units. Front Chem Sci Eng :1–9

    Google Scholar 

  19. Zhang T, Yue X, Gao L, Qiu F, Xu J, Rong J, Pan J (2017) Hierarchically porous bismuth oxide/layered double hydroxide composites: Preparation, characterization and iodine adsorption. Clean Prod 144:220–227

    CAS  Google Scholar 

  20. Tian Z, Chee TS, Zhang X, Lei L, Xiao C (2021) Novel bismuth-based electrospinning materials for highly efficient capture of radioiodine. Chem Eng J 412:220–227

    Google Scholar 

  21. Liu L, Liu W, Zhao X, Chen D, Cai R, Yang W, Komarneni S, Yang D (2014) Selective capture of iodide from solutions by microrosette-like delta-Bi2O3. ACS Appl Mater Inter 6:16082–16090

    CAS  Google Scholar 

  22. Asmussen RM, Neeway JJ, Lawter AR, Wilson A, Qafoku NP (2016) Silver-based getters for 129I removal from low-activity waste. Radiochim Acta 104:905–913

    CAS  Google Scholar 

  23. Zhang Y, Liu H, Gao F, Tan X, Cai Y, Hu B, Huang Q, Fang M, Wang X (2022) Application of MOFs and COFs for photocatalysis in CO2 reduction, H2 generation, and environmental treatment. Energy Chem :100078

    Google Scholar 

  24. Cordova EA, Garayburu-Caruso V, Pearce CI, Cantrell KJ, Morad JW, Gillispie EC, Riley BJ, Colon FC, Levitskaia TG, Saslow SA, Qafoku O, Resch CT, Rigali MJ, Szecsody JE, Heald SM, Balasubramanian M, Meyers P, Freedman VL (2020) Hybrid Sorbents for 129I Capture from Contaminated Groundwater. ACS Appl Mater Inter 12:26113–26126

    CAS  Google Scholar 

  25. Levitskaia TG, Campbell EL, Hall GB, Chatterjee S, Boglaienko D, Reilly DD, Carlson MA (2020) Characterization of spent Purolite A530E resin with implications for long-term radioactive contaminant removal. J Environ Chem Eng 8:104155

    CAS  Google Scholar 

  26. Curtius H, Kattilparampil Z (2005) Sorption of iodine on Mg-Al-layered double hydroxide. Clay Miner 40:455–461

    CAS  Google Scholar 

  27. Zhao Q, Chen G, Wang Z, Jiang M, Lin J, Zhang L, Zhu L, Duan T (2021) Efficient removal and immobilization of radioactive iodide and iodate from aqueous solutions by bismuth-based composite beads. Chem Eng J 426:131629

    CAS  Google Scholar 

  28. Chen D, Yu C, Chang C, Wan Y, Frechet JM, Goddard WA 3rd, Diallo MS (2012) Branched polymeric media: perchlorate-selective resins from hyperbranched polyethyleneimine. Environ Sci Technol 46:10718–10726

    CAS  PubMed  Google Scholar 

  29. Wei Y, Liu C, Mo L (2005) Ultraviolet absorption spectra of iodine, iodide ion and triiodide ion. Spectroscopy Spect Anal 25:86–88

    CAS  Google Scholar 

  30. Schmitz G (1999) Kinetics and mechanism of the iodate-iodide reaction and other related reactions. Phys Chem Chem Phys 1:1909–1914

    CAS  Google Scholar 

  31. Li J, Zhu L, Xiao C, Chen L, Chai Z, Wang S (2018) Efficient uptake of perrhenate/pertechnenate from aqueous solutions by the bifunctional anion-exchange resin. Radiochim Acta 106:581–591

    CAS  Google Scholar 

  32. Zhu Y, Gao N, Wang Q, Wei X (2015) Adsorption of perchlorate from aqueous solutions by anion exchange resins: Effects of resin properties and solution chemistry. Colloid Surf A 468:114–121

    CAS  Google Scholar 

  33. Chen J, Wang J, Gao Q, Zhang X, Liu Y, Wang P, Jiao Y, Zhang Z, Yang Y (2020) Enhanced removal of I- on hierarchically structured layered double hydroxides by in suit growth of Cu/Cu2O. J Environ Sci 88:338–348

    CAS  Google Scholar 

  34. Zhao X, Han X, Li Z, Huang H, Liu D, Zhong C (2015) Enhanced removal of iodide from water induced by a metal-incorporated porous metal-organic framework. Appl Surf Sci 351:760–764

    CAS  Google Scholar 

  35. Zhao Q, Chen G, Wang Z, Jiang M, Lin J, Zhang L, Zhu L, Duan T (2021) Efficient removal and immobilization of radioactive iodide and iodate from aqueous solutions by bismuth-based composite beads. Chem Eng Jl 426:131629

    CAS  Google Scholar 

  36. Tan K, Hameed BH (2017) Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. J Taiwan Inst Chem Eng 74:25–48

    CAS  Google Scholar 

  37. Ho YS (2006) Review of second-order models for adsorption systems. J Hazard Mater 136:681–689

    CAS  PubMed  Google Scholar 

  38. Al-Ghouti MA, Da’ana DA (2020) Guidelines for the use and interpretation of adsorption isotherm models: A review. J Hazard Mater 393:122383

    CAS  PubMed  Google Scholar 

  39. Rajahmundry GK, Garlapati C, Kumar PS, Alwi RS, Vo DN (2021) Statistical analysis of adsorption isotherm models and its appropriate selection. Chemosphere 276:130176

    CAS  PubMed  Google Scholar 

  40. Gu B, Brown GM, Bonnesen PV, Moyer LLY, BA, Ober R, Alexandratos SD, (2000) Development of novel bifunctional anion exchange resins with improved selectivity for pertechnetate sorption from contaminated groundwater. Environ Sci Technol 34:1075–1080

    CAS  Google Scholar 

  41. Li Y, Yang J, Jin J, Sun X, Wang L, Chen J (2014) New reversed-phase/anion-exchange/hydrophilic interaction mixed-mode stationary phase based on dendritic polymer-modified porous silica. J Chromatogr A 1337:133–139

    CAS  PubMed  Google Scholar 

  42. Baer MD, Pham V-T, Fulton JL, Schenter GK, Balasubramanian M, Mundy CJ (2011) Is iodate a strongly hydrated cation? J Phys Chem Lett 2:2650–2654

    CAS  Google Scholar 

  43. Marcus Y (1997) Ion properties. CRC Press

    Google Scholar 

  44. Chen JY, Gu AT, Miensah ED, Liu Y, Wang P, Mao P, Gong CH, Jiao Y, Chen K, Zhang ZX, Yang Y (2021) Core-shell ZnO@Cu2O encapsulated Ag NPs nanocomposites for photooxidation-adsorption of iodide anions under visible light. Sep Purifi Technol 262:118328

    CAS  Google Scholar 

  45. Li J, Dai X, Zhu L, Xu C, Zhang D, Silver MA, Li P, Chen L, Li Y, Zuo D, Zhang H, Xiao C, Chen J, Diwu J, Farha OK, Albrecht-Schmitt TE, Chai Z, Wang S (2018) 99TcO4- remediation by a cationic polymeric network. Nat Commun 9:3007

    PubMed  PubMed Central  Google Scholar 

  46. Zhang Y, Cremer PS (2010) Chemistry of Hofmeister anions and osmolytes. Annu Rev Phys Chem 61:63–83

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22176139, 21790374, 21825601, and U1967217), the Postdoctoral Science Foundation of China (2021M702390 and BX2021206), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the National Key R&D Program of China (2021YFB3200400 and 2018YFB1900203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuao Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yuting Zhao, Jie Li, and Long Chen contributed equally to this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2019 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Li, J., Chen, L. et al. Efficient removal of iodide/iodate from aqueous solutions by Purolite A530E resin. J Radioanal Nucl Chem 332, 1193–1202 (2023). https://doi.org/10.1007/s10967-023-08786-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08786-8

Keywords

Navigation