Skip to main content
Log in

Theoretical insight into the structure of molten LiF, BF2, YF3 and ThF4

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Thorough and atomistic level understanding of the fundamental structure of molten salts could potentially benefit it’s application in molten salts reactor, concentrating solar power and spent fuel reprocessing. Our molecular dynamic simulations of four representative molten fluorides (LiF, BeF2, YF3 and ThF4) and real space structure analysis unveiled the distribution of coordination complexes in these systems. A special reciprocal space structure analysis of simulation results, which was never employed in molten fluorides, revealed two types of orderings in these salts and the two corresponding peaks in their predicted X-ray scattering structure functions. Most importantly, our research suggests BeF2 have a fluoride-decorated cation network and across-network interactions give rise to prepeak in its structure function. This means the “across network interaction mechanism” proposed by Claudio Margulis, the author and collaborators, which is based on the investigation of molten chlorides, may also be valid for other molten salts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Andrews HB, McFarlane J, Chapel AS, Ezell NDB, Holcomb DE, de Wet D, Greenwood MS, Myhre KG, Bryan SA, Lines A, Riley BJ, Felmy HM, Humrickhouse PW (2021) Review of molten salt reactor off-gas management considerations. Nucl Eng Des. https://doi.org/10.1016/j.nucengdes.2021.111529

    Article  Google Scholar 

  2. Taylor Z, Salko R, Graham AM, Collins BS, Maldonado GI (2022) Implementation of two-phase gas transport into VERA for molten salt reactor analysis. Ann Nucl Energy. https://doi.org/10.1016/j.anucene.2021.108672

    Article  Google Scholar 

  3. Benes O, Capelli E, Vozarova N, Colle JY, Tosolin A, Wiss T, Cremer B, Konings RJM (2021) Cesium and iodine release from fluoride-based molten salt reactor fuel. Phys Chem Chem Phys. https://doi.org/10.1039/d0cp05794k

    Article  PubMed  Google Scholar 

  4. He Z, Song JL, Lian PF, Zhang DQ, Liu ZJ (2019) Excluding molten fluoride salt from nuclear graphite by SiC/glassy carbon composite coating. Nucl Eng Technol. https://doi.org/10.1016/j.net.2019.03.006

    Article  Google Scholar 

  5. Singh SP, Gupta DK, Yadav P, Singh S, Kumar A (2022) Influence of process parameters on capital cost, the efficiency of CSP based solar power plants: a review. Mater Today Proc. https://doi.org/10.1016/j.matpr.2022.02.606

    Article  PubMed  PubMed Central  Google Scholar 

  6. Liu TL, Liu WR, Xu XH (2017) Properties and heat transfer coefficients of four molten-salt high temperature heat transfer fluid candidates for concentrating solar power plants. IOP Conf Ser Earth Environ Sci. https://doi.org/10.1088/1755-1315/93/1/012023

    Article  Google Scholar 

  7. Zhang YT, Qiu Y, Li Q, Henry A (2022) Optical-thermal-mechanical characteristics of an ultra-high-temperature graphite receiver designed for concentrating solar power. Appl Energy. https://doi.org/10.1016/j.apenergy.2021.118228

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sharma VK, Singh R, Gehlot A, Buddhi D, Braccio S, Priyadarshi N, Khan B (2022) Imperative role of photovoltaic and concentrating solar power technologies towards renewable energy generation. Int J Photoenergy. https://doi.org/10.1155/2022/3852484

    Article  Google Scholar 

  9. Liu YC, Liu YL, Wang L, Jiang SL, Zhong YK, Wu YZ, Li M, Shi WQ (2022) Chemical species transformation during the dissolution process of U3O8 and UO3 in the LiCl–KCl–AlCl3 molten salt. Inorg Chem. https://doi.org/10.1021/acs.inorgchem.2c00286

    Article  PubMed  PubMed Central  Google Scholar 

  10. Quan MY, Liu Q, Liu YH, Zhang ZB, Dai Y, Wang YQ, Cao XH, Cheng ZP, Wang YC, Liu YH (2022) Electroextraction and thermochemistry of fission element gadolinium on plumbum electrode in molten salt. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2021.119413

    Article  Google Scholar 

  11. Xu XJ, Wang XP, Smolenski V, Mi WS, Yan YD, Novoselova A, Xue Y, Ma FQ, Zhang ML, Zhang XM, Zhu K (2022) Electrochemical extraction of uranium from U3O8 by preparing flower-shaped Al–U intermetallics in LiCl–KCl–AlCl3 melts. J Nucl Mater. https://doi.org/10.1016/j.jnucmat.2022.153735

    Article  Google Scholar 

  12. Volkovich VA (2004) The reprocessing of nuclear waste using molten salts: selective precipitation using phosphate and solving problems of speciation. ECS PVs. https://doi.org/10.1149/200424.0729pv

    Article  Google Scholar 

  13. Vaslow F, Narten AH (1973) Diffraction pattern and structure of molten BeF2–LiF solutions. J Chem Phys. https://doi.org/10.1063/1.1680711

    Article  Google Scholar 

  14. Ocadiz-Flores JA, Gheribi AE, Vlieland J, de Haas D, Dardenne K, Rothe J, Konings RJM, Smith AL (2021) Examination of the short-range structure of molten salts: ThF4, UF4, and related alkali actinide fluoride systems. Phys Chem Chem Phys. https://doi.org/10.1039/d1cp00566a

    Article  PubMed  Google Scholar 

  15. Bessada C, Rakhmatullin A, Rollet AL, Zanghi D (2009) High temperature NMR approach of mixtures of rare earth and alkali fluorides: an insight into the local structure. J Fluor Chem. https://doi.org/10.1016/j.jfluchem.2008.07.010

    Article  Google Scholar 

  16. Wilson M, Madden PA (1994) Anion polarization and the stability of layered structures in MX2 systems. J Phys Condens Matter. https://doi.org/10.1088/0953-8984/6/1/017

    Article  Google Scholar 

  17. Wilson M, Madden PA (1993) Short- and intermediate-range order in MCl2 melts: the importance of anionic polarization. J Phys Condens Matter. https://doi.org/10.1088/0953-8984/5/37/004

    Article  Google Scholar 

  18. Salanne M, Madden PA (2011) Polarization effects in ionic solids and melts. Mol Phys. https://doi.org/10.1080/00268976.2011.617523

    Article  Google Scholar 

  19. Susman S, Volin KJ, Price DL, Grimsditch M, Rino JP, Kalia RK, Vashishta P, Gwanmesia G, Wang Y, Liebermann RC (1991) Intermediate-range order in permanently densified vitreous SiO2: a neutron-diffraction and molecular-dynamics study. Phys Rev B. https://doi.org/10.1103/PhysRevB.43.1194

    Article  Google Scholar 

  20. Elliott SR (1991) Origin of the first sharp diffraction peak in the structure factor of covalent glasses. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.67.711

    Article  PubMed  Google Scholar 

  21. Susman S, Volin KJ, Montague DG, Price DL (1990) The structure of vitreous and liquid GeSe2: a neutron diffraction study. J Non Cryst Solids. https://doi.org/10.1016/0022-3093(90)90336-K

    Article  Google Scholar 

  22. Wilson M, Madden PA (1994) “Prepeaks and first sharp diffraction peaks” in computer simulations of strong and fragile ionic liquids. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.72.3033

    Article  PubMed  Google Scholar 

  23. Wilson M (2016) Structure and dynamics in network-forming materials. J Phys Condens Matter. https://doi.org/10.1088/0953-8984/28/50/503001

    Article  PubMed  Google Scholar 

  24. Wu F, Roy S, Ivanov AS, Gill SK, Topsakal M, Dooryhee E, Abeykoon M, Kwon G, Gallington LC, Halstenberg P, Layne B, Ishii Y, Mahurin SM, Dai S, Bryantsev VS, Margulis CJ (2019) Elucidating ionic correlations beyond simple charge alternation in molten MgCl2–KCI mixtures. J Phys Chem Lett. https://doi.org/10.1021/acs.jpclett.9b02845

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wu F, Sharma S, Roy S, Halstenberg P, Gallington LC, Mahurin SM, Dai S, Bryantsev VS, Ivanov AS, Margulis CJ (2020) Temperature dependence of short and intermediate range order in molten MgCl2 and its mixture with KCl. J Phys Chem B. https://doi.org/10.1021/acs.jpcb.0c00745

    Article  PubMed  PubMed Central  Google Scholar 

  26. Roy S, Sharma S, Karunaratne WV, Wu F, Gakhar R, Maltsev DS, Halstenberg P, Abeykoon M, Gill SK, Zhang YP, Mahurin SM, Dai S, Bryantsev VS, Margulis CJ, Ivanov AS (2021) X-ray scattering reveals ion clustering of dilute chromium species in molten chloride medium. Chem Sci. https://doi.org/10.1039/d1sc01224j

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sharma S, Ivanov AS, Margulis CJ (2021) A brief guide to the structure of high-temperature molten salts and key aspects making them different from their low-temperature relatives, the ionic liquids. J Phys Chem B. https://doi.org/10.1021/acs.jpcb.1c01065

    Article  PubMed  PubMed Central  Google Scholar 

  28. Heaton RJ, Brookes R, Madden PA, Salanne M, Simon C, Turq P (2006) A first-principles description of liquid BeF2 and its mixtures with LiF: 1. Potential development and pure BeF2. J Phys Chem B. https://doi.org/10.1021/jp061000+

    Article  PubMed  Google Scholar 

  29. Salanne M, Rotenberg B, Jahn S, Vuilleumier R, Simon C, Madden PA (2012) Including many-body effects in models for ionic liquids. Theor Chem Acc. https://doi.org/10.1007/s00214-012-1143-9

    Article  Google Scholar 

  30. Dewan LC, Simon C, Madden PA, Hobbs LW, Salanne M (2013) Molecular dynamics simulation of the thermodynamic and transport properties of the molten salt fast reactor fuel LiF–ThE4. J Nucl Mater. https://doi.org/10.1016/j.jnucmat.2012.12.006

    Article  Google Scholar 

  31. Hutter J, Iannuzzi M, Schiffmann F, VandeVondele J (2014) CP2K: atomistic simulations of condensed matter systems. Wiley Interdiscip Rev Comput Mol Sci. https://doi.org/10.1002/wcms.1159

    Article  Google Scholar 

  32. Aguado A, Madden PA (2003) Ewald summation of electrostatic multipole interactions up to the quadrupolar level. J Chem Phys. https://doi.org/10.1063/1.1605941

    Article  Google Scholar 

  33. Nose S (1984) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys. https://doi.org/10.1080/00268978400101201

    Article  Google Scholar 

  34. Nose S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys. https://doi.org/10.1063/1.447334

    Article  Google Scholar 

  35. Lorch E (1969) Neutron diffraction by germania, silica and radiation-damaged silica glasses. J Phys C Solid State Phys. https://doi.org/10.1088/0022-3719/2/2/305

    Article  Google Scholar 

  36. Du JC, Benmore CJ, Corrales R, Hart RT, Weber JKR (2009) A molecular dynamics simulation interpretation of neutron and x-ray diffraction measurements on single phase Y2O3–Al2O3 glasses. J Phys Condens Matter. https://doi.org/10.1088/0953-8984/21/20/205102

    Article  PubMed  Google Scholar 

  37. Araque JC, Hettige JJ, Margulis CJ (2015) Modern room temperature ionic liquids, a simple guide to understanding their structure and how it may relate to dynamics. J Phys Chem B. https://doi.org/10.1021/acs.jpcb.5b05506

    Article  PubMed  Google Scholar 

  38. Corradini D, Madden PA, Salanne M (2016) Coordination numbers and physical properties in molten salts and their mixtures. Faraday Discuss. https://doi.org/10.1039/c5fd00223k

    Article  PubMed  Google Scholar 

  39. Annapureddy HVR, Kashyap HK, De Biase PM, Margulis CJ (2010) What is the origin of the prepeak in the X-ray scattering of imidazolium-based room-temperature ionic liquids? J Phys Chem B. https://doi.org/10.1021/jp108545z

    Article  PubMed  Google Scholar 

  40. Kashyap HK, Hettige JJ, Annapureddy HVR, Margulis CJ (2012) SAXS anti-peaks reveal the length-scales of dual positive-negative and polar-apolar ordering in room-temperature ionic liquids. ChemComm. https://doi.org/10.1039/c2cc30609c

    Article  Google Scholar 

  41. Kashyap HK, Margulis CJ (2013) Theoretical deconstruction of the X-ray structure function exposes polarity alternations in room temperature ionic liquids. ECS Trans. https://doi.org/10.1149/05011.0301ecst

    Article  Google Scholar 

  42. Santos CS, Annapureddy HVR, Murthy NS, Kashyap HK, Castner EW, Margulis CJ (2011) Temperature-dependent structure of methyltributylammonium bis (trifluoromethylsulfonyl) amide: X ray scattering and simulations. J Chem Phys. https://doi.org/10.1063/1.3526958

    Article  PubMed  Google Scholar 

  43. Wu F, Karunaratne WV, Margulis CJ (2019) Ionic liquid mixture at the vacuum interface and the peaks and antipeaks analysis of X-ray reflectivity. J Phys Chem C. https://doi.org/10.1021/acs.jpcc.8b11958

    Article  Google Scholar 

  44. Schultz AJ, Hall CK, Genzer J (2007) Obtaining concentration profiles from computer simulation structure factors. Macromolecules. https://doi.org/10.1021/ma062836d

    Article  Google Scholar 

  45. Hettige JJ, Araque JC, Margulis CJ (2014) Bicontinuity and multiple length scale ordering in triphilic hydrogen-bonding ionic liquids. J Phys Chem B. https://doi.org/10.1021/jp5068457

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (grant nos.22106058). F.W. also acknowledge Supercomputing Center of Lanzhou University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Wu.

Ethics declarations

Conflicts of interest

The author declare that no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Wu, F. Theoretical insight into the structure of molten LiF, BF2, YF3 and ThF4. J Radioanal Nucl Chem 332, 1163–1170 (2023). https://doi.org/10.1007/s10967-023-08780-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08780-0

Keywords

Navigation