Skip to main content
Log in

Investigation on the thermal stability of cesium in soil pretreatment and its separation using AMP-PAN resin

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Cesium-137 (137Cs) is a main product of the nuclear fission. The release of 137Cs can contaminate soil by deposition from the atmosphere. It is critical to develop a high-efficiency way to determinate 137Cs in the soil. To reach it, the sample pretreatment and 137Cs separation from sample matrix is significant. This work focused on the thermal stability of Cs(I) during soil dry ashing and acid solution evaporation. The separation performance of AMP-PAN resin for Cs(I) was investigated through batch and dynamic column experiments. The results reveal that Cs(I) does not loss during soil sample dry ashing (T < 600 °C) and acidic solution evaporation to dryness at 100 °C. The optimal condition for Cs(I) uptake by AMP-PAN resin was pH 0 − 4, and co-existing interference ions had a detrimental effect on Cs(I) adsorption. The adsorption capacity of AMP-PAN resin for Cs(I) was not significantly decreased after irradiation with different γ radiation doses. Cs(I) could be loaded on the column using 0.1 mol/L HNO3 and eluted with 5 mol/L NH4Cl solution with a high recovery of Cs than 90%. These findings shed fresh light on the separation of target element in the analysis of 137Cs in soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chino M, Nakayama H, Nagai H, Terada H, Katata G, Yamazawa H (2011) Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the fukushima daiichi nuclear power plant into the atmosphere. J Nucl Sci Technol 48:1129–1134

    Article  CAS  Google Scholar 

  2. Russell BC, Croudace IW, Warwick PE (2015) Determination of 135Cs and 137Cs in environmental samples: a review. Anal Chim Acta 890:7–20

    Article  CAS  PubMed  Google Scholar 

  3. Russell BC, Croudace IW, Warwick PE, Milton JA (2014) Determination of precise 135Cs/137Cs ratio in environmental samples using sector field inductively coupled plasma mass spectrometry. Anal Chem 86:8719–8726

    Article  CAS  PubMed  Google Scholar 

  4. Zhu L, Hou X, Qiao J (2021) Determination of 135Cs concentration and 135Cs/137Cs ratio in waste samples from nuclear decommissioning by chemical separation and ICP-MS/MS. Talanta 221:121637

    Article  CAS  PubMed  Google Scholar 

  5. Shibahara Y, Kubota T, Fujii T, Fukutani S, Takamiya K, Konno M, Mizuno S, Yamana H (2017) Analysis of cesium isotope compositions in environmental samples by thermal ionization mass spectrometry-3. J Nucl Sci Technol 54:158–166

    Article  CAS  Google Scholar 

  6. Yang G, Tazoe H, Yamada M (2016) Rapid determination of 135Cs and precise 135Cs/137Cs atomic ratio in environmental samples by single-column chromatography coupled to triple-quadrupole inductively coupled plasma-mass spectrometry. Anal Chim Acta 908:177–184

    Article  CAS  PubMed  Google Scholar 

  7. Takahashi H, Park KC, Nomura M, Shibahara H, Miura H, Ohishi Y, Yuki M, Tsukahara T (2021) Influence of extraction process on Cs isotope ratios for Fukushima Daiichi nuclear power plant accident-contaminated soil. J Radioanal Nucl Chem 329:327–336

    Article  CAS  Google Scholar 

  8. Haas PA (1993) A review of information on ferrocyanide solids for removal of cesium from solutions. Sep Sci Technol 28:2479–2506

    Article  CAS  Google Scholar 

  9. Shakir K, Sohsah M, Soliman M (2007) Removal of cesium from aqueous solutions and radioactive waste simulants by coprecipitate flotation. Sep Sci Technol 54:373–381

    CAS  Google Scholar 

  10. Makrlík E, Vaňura P (2012) Synergistic extraction of some univalent cations into nitrobenzene by using cesium dicarbollylcobaltate and dibenzo-30-crown-10. J Radioanal Nucl Chem 295:911–914

    Article  Google Scholar 

  11. Jalhoom MG, Mani IA, Hassan JA (1985) Extraction of sodium and some fission products with crown ethers. Radiochim Acta 38(4):219–222

    Article  CAS  Google Scholar 

  12. Rajec P, Domianová K (2007) Cesium exchange reaction on natural and modified clinoptilolite zeolites. J Radioanal Nucl Chem 275:503–508

    Article  Google Scholar 

  13. Yıldız B, Erten HN, Kış M (2011) The sorption behavior of Cs+ ion on clay minerals and zeolite in radioactive waste management: sorption kinetics and thermodynamics. J Radioanal Nucl Chem 288:475–483

    Article  Google Scholar 

  14. Bilewicz A, Dybczynski R, Narbutt J (1991) Ion exchange of alkali metals on hydrated titanium dioxide in neutral and alkaline solutions. J Radioanal Nucl Chem 148:359–371

    Article  CAS  Google Scholar 

  15. Šebesta F, Štefula V (1990) Composite ion exchanger with ammonium molybdophosphate and its properties. J Radioanal Nucl Chem 140:15–21

    Article  Google Scholar 

  16. Todd TA, Mann NR, Tranter TJ, Šebesta F, John J, Motl A (2002) Cesium sorption from concentrated acidic tank wastes using ammonium molybdophosphate-polyacrylonitrile composite sorbents. J Radioanal Nucl Chem 254:47–52

    Article  CAS  Google Scholar 

  17. Tranter TJ, Herbst RS, Todd TA, Olson AL, Eldredge HB (2002) Evaluation of ammonium molybdophosphate-polyacrylonitrile (AMP–PAN) as a cesium selective sorbent for the removal of 137Cs from acidic nuclear waste solutions. Adv Environ Res 6:107–121

    Article  CAS  Google Scholar 

  18. Xu Z, Rong M, Meng Q, Yao H, Ni S, Wang L, Xing H, Qu H, Yang L, Liu H (2020) Fabrication of hypercrosslinked hydroxyl-rich solid phase extractants for cesium separation from the salt lake brine. Chem Eng J 400:125991

    Article  CAS  Google Scholar 

  19. Park Y, Lee YC, Shin WS, Choi SJ (2010) Removal of cobalt, strontium and cesium from radioactive laundry wastewater by ammonium molybdophosphate–polyacrylonitrile (AMP-PAN). Chem Eng J 162:685–695

    Article  CAS  Google Scholar 

  20. Nilchi A, Saberi R, Moradi M, Azizpour H, Zarghami R (2011) Evaluation of AMP-PAN composite for adsorption of Cs+ ions from aqueous solution using batch and fixed bed operations. J Radioanal Nucl Chem 292:609–617

    Article  Google Scholar 

  21. Pike SM, Buesseler KO, Breier CF, Dulaiova H, Stastna K, Sebesta F (2012) Extraction of cesium in seawater off Japan using AMP-PAN resin and quantification via gamma spectroscopy and inductively coupled mass spectrometry. J Radioanal Nucl Chem 296:369–374

    Article  Google Scholar 

  22. Choi H, Jeong J, Kim HB, Kim S, Walker B, Kim GH, Kim JY (2014) Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy 7:80–85

    Article  CAS  Google Scholar 

  23. Fujii M, Ono K, Yoshimura C, Miyamoto M (2018) The role of autochthonous organic matter in radioactive cesium accumulation to riverine fine sediments. Water Res 137:18–27

    Article  CAS  PubMed  Google Scholar 

  24. Green RM, Finn RJ (1964) Loss of cesium-137 in the ashing of milk samples. Anal Chem 36:692–693

    Article  CAS  Google Scholar 

  25. Blincoe C, Bohman VR (1971) Cesium-137 from environmental sources in desert range cattle from 1962 through 1968. Environ Res 4:193–200

    Article  CAS  PubMed  Google Scholar 

  26. Shi K, Hou X, Roos P, Wu W (2012) Stability of technetium and decontamination from ruthenium and molybdenum in determination of 99Tc in environmental solid samples by ICPMS. Anal Chem 84:2009–2016

    Article  CAS  PubMed  Google Scholar 

  27. Zhang X, Wu Y, Wei Y, Mimura H, Matsukura M (2017) Stable solidification of cesium with an allophane additive by a pressing/sintering method. J Nucl Mater 485:39–46

    Article  CAS  Google Scholar 

  28. Raut DR, Mohapatra PK, Wattal PK, Manchanda VK (2011) Effect of irradiation on AMP based resins for cesium separation from HNO3 feed solutions: batch and column studies. J Radioanal Nucl Chem 292:661–666

    Article  Google Scholar 

  29. Kubo A, Tanabe K, Suzuki G, Ito Y, Ishimaru T, Kasamatsu-Takasawa N, Tsumune D, Mizuno T, Watanabe YW, Arakawa H, Kanda J (2018) Radioactive cesium concentrations in coastal suspended matter after the Fukushima nuclear accident. Mar Pollut Bull 131:341–346

    Article  CAS  PubMed  Google Scholar 

  30. Liezers M, Farmer OT, Thomas ML (2009) Low level detection of 135Cs and 137Cs in environmental samples by ICP-MS. J Radioanal Nucl Chem 282:309–313

    Article  CAS  Google Scholar 

  31. Nilchi A, Saberi R, Moradi M, Azizpour H, Zarghami R (2011) Adsorption of cesium on copper hexacyanoferrate–PAN composite ion exchanger from aqueous solution. Chem Eng J 172:572–580

    Article  CAS  Google Scholar 

  32. Yang HJ, Yu HW, Sun JK, Liu JT, Xia JB, Fang JD, Li Y, Qu FZ, Song AY, Wu T (2017) Facile synthesis of mesoporous magnetic AMP polyhedric composites for rapid and highly efficient separation of Cs+ from water. Chem Eng J 317:533–543

    Article  CAS  Google Scholar 

  33. Ding D, Zhang Z, Chen R, Cai T (2017) Selective removal of cesium by ammonium molybdophosphate-polyacrylonitrile bead and membrane. J Hazard Mater 324:753–761

    Article  CAS  PubMed  Google Scholar 

  34. Yin XB, Wang XP, Wu H, Takahashi H, Inaba Y, Ohnuki T, Takeshita K (2017) Effects of NH4+, K+, Mg2+, and Ca2+ on the cesium adsorption/desorption in binding sites of vermiculitized biotite. Environ Sci Technol 51(23):13886–13894

    Article  CAS  PubMed  Google Scholar 

  35. Tansel B, Sager J, Rector T, Garland J, Strayer RF, Levine L, Roberts M, Hummerick M, Bauer J (2006) Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes. Sep Purif Technol 51:40–47

    Article  CAS  Google Scholar 

  36. Mahendra C, Bera S, Babu CA, Rajan KK (2013) Separation of cesium by electro dialysis ion exchange using AMP-PAN. Sep Sci Technol 48:2473–2478

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support from National Natural Science Foundation of China (Nos. 22061132004, U21A20442, 12175201, 21771093) and Fundamental Research Funds for the Central Universities of China (No. lzujbky-2022-kb13, lzujbky-2022-pd11) are gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keliang Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Wang, M., Zhang, L. et al. Investigation on the thermal stability of cesium in soil pretreatment and its separation using AMP-PAN resin. J Radioanal Nucl Chem 332, 877–885 (2023). https://doi.org/10.1007/s10967-023-08775-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08775-x

Keywords

Navigation