Skip to main content
Log in

Detector response function establishment and deconvolution calculation analysis based on CdZnTe detector

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In order to miniaturize the handheld radioisotope identification device and improve the accuracy of recognition results, the gamma spectrum deconvolution calculation based on cadmium zinc telluride (CdZnTe) detector was investigated in this study. The complete research method mainly included three steps: detector response function (DRF) establishment, detector response matrix (DRM) establishment, and deconvolution calculation analysis. According to the comparison between the reconstructed spectra and the measured spectra, all mean square error (MSE) values were less than 0.1%, which verified that the comprehensive analysis method was accurate and feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Pibida L, Unterweger M, Karam LR (2004) Evaluation of handheld radionuclide identifiers. J Res Natl Inst Stan. https://doi.org/10.6028/jres.109.032

    Article  Google Scholar 

  2. Swoboda M, Arlt R, Gostilo V, Lupilov A, Majorov M, Moszynski M, Syntfeld A (2005) Spectral gamma detectors for hand-held radioisotope identification devices (RIDs) for nuclear security applications. IEEE T Nucl Sci. https://doi.org/10.1109/TNS.2005.860199

    Article  Google Scholar 

  3. Kim J, Park K, Cho G (2019) Multi-radioisotope identification algorithm using an artificial neural network for plastic gamma spectra. Appl Radiat Isotopes. https://doi.org/10.1016/j.apradiso.2019.01.005

    Article  Google Scholar 

  4. Menzio L, Lega A, Scordo A, Capoccia C, Ferrante L, Bedogni R, Curceanu C (2021) SICURA: a new handheld radionuclide identification device with gamma and neutron response. J Instrum. https://doi.org/10.1088/1748-0221/16/07/P07051

    Article  Google Scholar 

  5. Syntfeld A, Arlt R, Gostilo V, Loupilov A, Moszynski M, Nassalski A, Swoboda M, Wolski D (2006) Comparison of a LaBr3(Ce) scintillation detector with a large volume CdZnTe detector. IEEE T Nucl Sci. https://doi.org/10.1109/TNS.2006.885385

    Article  Google Scholar 

  6. Chun SD, Park SH, Lee DH, Kim YK, Ha JH, Kang SM, Cho YH, Hong DG, Kim JK (2008) Property of a CZT semiconductor detector for radionuclide identification. J Nucl Sci Technol. https://doi.org/10.1080/00223131.2008.10875879

    Article  Google Scholar 

  7. Lee T, Kim Y, Jo A, Kim J, Lee W (2019) Performance of a virtual frisch-grid CdZnTe detector for prompt γ-ray induced by 14 MeV neutrons: Monte Carlo simulation study. Appl Radiat Isotopes. https://doi.org/10.1016/j.apradiso.2019.108818

    Article  Google Scholar 

  8. Mortreau P, Berndt R (2001) Characterisation of cadmium zinc telluride detector spectra-application to the analysis of spent fuel spectra. Nucl Instrum Meth A. https://doi.org/10.1016/S0168-9002(00)00862-7

    Article  Google Scholar 

  9. Bao L, Zha GQ, Li J, Guo LJ, Dong JP, Jie WQ (2019) CdZnTe quasi-hemispherical detector for gamma-neutron detection. J Nucl Sci Technol. https://doi.org/10.1080/00223131.2019.1592722

    Article  Google Scholar 

  10. Li LX, Huang GW, Xi SX, Zhang SY, Zhou CZ, Liu DH, Wang ZA, Zeng GQ, Yang XF (2022) gamma-ray energy spectrum response tailing in CdZnTe detector. Nuclear Inst Methods Phys Res A. https://doi.org/10.1016/j.nima.2022.166922

    Article  Google Scholar 

  11. Dardenne YX, Wang TF, Lavietes AD, Mauger GJ, Ruhter WD, Kreek SA (1999) Cadmium zinc telluride spectral modeling. Nucl Instrum Meth A. https://doi.org/10.1016/S0168-9002(98)00947-4

    Article  Google Scholar 

  12. Gardner RP, Zhang W, Metwally WA (2005) Status of software for PGNAA bulk analysis by the Monte Carlo-library least-squares (MCLLS) approach. J Radioanal Nucl Ch. https://doi.org/10.1007/s10967-005-0697-6

    Article  Google Scholar 

  13. Guttormsen M, Tveter TS, Bergholt L, Ingebretsen F, Rekstad J (1996) The unfolding of continuum gamma-ray spectra. Nucl Instrum Meth A. https://doi.org/10.1016/0168-9002(96)00197-0

    Article  Google Scholar 

  14. Alizadeh D, Ashrafi S (2018) New hybrid metaheuristic algorithm for scintillator gamma ray spectrum analysis. Nucl Instrum Meth A. https://doi.org/10.1016/j.nima.2018.10.178

    Article  Google Scholar 

  15. Sood A, Gardner RP (2004) A new Monte Carlo assisted approach to detector response functions. Nucl Instrum Meth B. https://doi.org/10.1016/S0168-583X(03)01540-4

    Article  Google Scholar 

  16. Gardner RP, Sood A (2004) A Monte Carlo simulation approach for generating NaI detector response functions (DRFs) that accounts for non-linearity and variable flat continua. Nucl Instrum Meth B. https://doi.org/10.1016/S0168-583X(03)01539-8

    Article  Google Scholar 

  17. Wang JX, Wang ZJ, Peeples J, Yu HW, Gardner RP (2012) Development of a simple detector response function generation program: the CEARDRFs code. Appl Radiat Isotopes. https://doi.org/10.1016/j.apradiso.2011.11.003

    Article  Google Scholar 

  18. Jandel M, Morhac M, Kliman J, Krupa L, Matousek V, Hamilton JH, Ramayya A (2004) Decomposition of continuum gamma-ray spectra using synthesized response matrix. Nucl Instrum Meth A. https://doi.org/10.1016/j.nima.2003.07.047

    Article  Google Scholar 

  19. Morhac M, Kliman J, Matousek V, Veselsky M, Turzo I (1997) Efficient one- and two-dimensional gold deconvolution and its application to gamma-ray spectra decomposition. Nucl Instrum Meth A. https://doi.org/10.1016/S0168-9002(97)01058-9

    Article  Google Scholar 

  20. Morhac M, Matousek V (2011) High-resolution boosted deconvolution of spectroscopic data. J Comput Appl Math. https://doi.org/10.1016/j.cam.2010.09.005

    Article  Google Scholar 

  21. Shi R, Tuo XG, Li HL, Xu YY, Shi FR, Yang JB, Luo Y (2018) Unfolding analysis of LaBr3: Ce gamma spectrum with a detector response matrix constructing algorithm based on energy resolution calibration. Nucl Sci Tech. https://doi.org/10.1007/s41365-017-0340-6

    Article  Google Scholar 

Download references

Acknowledgements

This work was a project funded by National Key R&D Program of China (No.2021YFC2900700), National Natural Science Foundation of China (12205131) and China Postdoctoral Science Foundation (2022M711444).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DaQian Hei.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Hei, D., Li, J. et al. Detector response function establishment and deconvolution calculation analysis based on CdZnTe detector. J Radioanal Nucl Chem 332, 1325–1336 (2023). https://doi.org/10.1007/s10967-023-08768-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08768-w

Keywords

Navigation