Skip to main content
Log in

Two-step separation of Th, La and Ba using combined chromatographic columns

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A combined chromatographic columns including LN resin and P204 resin were fabricated to separate Th4+, La3+ and Ba2+ ions with a series of parallel experiments at different acidity and initial concentrations. The results show that LNS resin can selectively adsorb Th4+ ions but not La3+ and Ba2+ ions in 1 mol/L HNO3, and the separation factor of Th/La and Th/Ba can reach up to 8.260 × 104 and 8.224 × 105, respectively. The La3+ and Ba2+ ions can be separated by P204 resin at pH = 3 with a separation factor of 2.191 × 104. The successful separation and enrichment of La in this separation system provides a possibility for the separation of Ac, which is of great significance to TAT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bhattacharyya S, Dixit M (2011) Metallic radionuclides in the development of diagnostic and therapeutic radiopharmaceuticals. Dalton Trans 40:6112–6128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cutler CS, Hennkens HM, Sisay N, Huclier-Markai S, Jurisson SS (2013) Radiometals for combined imaging and therapy. Chem Rev 113:858–883

    Article  CAS  PubMed  Google Scholar 

  3. Rosch F, Baum RP (2011) Generator-based PET radiopharmaceuticals for molecular imaging of tumours: on the way to THERANOSTICS. Dalton Trans 40:6104–6111

    Article  PubMed  Google Scholar 

  4. Maalouf BN (2012) Targeted use of alpha particles: current status in cancer therapeutics. J Nucl Med 3(4):1000136

    Google Scholar 

  5. Morgenstern A, Bruchertseifer F, Apostolidis C (2012) Bismuth-213 and actinium- 225–generator performance and evolving therapeutic applications of two generator-derived alpha-emitting radioisotopes. Curr Radiopharm 5(3):221–227

    Article  CAS  PubMed  Google Scholar 

  6. Scheinberg DA, McDevitt MR (2011) Actinium-225 in targeted alpha-particle therapeutic applications. Curr Radiopharm 4(4):306–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Boll RA, Malkemus D, Mirzadeh S (2005) Production of actinium-225 for alpha particle mediated radioimmunotherapy. Appl Radiat Isot 62:667–679

    Article  CAS  PubMed  Google Scholar 

  8. Chérel M, Barbet J (2013) Alpha emitting radionuclides and radiopharmaceuticals for therapy

  9. Engle JW, Mashnik SG, Weidner JW, Wolfsberg LE, Fassbender ME, Jackman K, Couture A, Bitteker LJ, Ullmann JL, Gulley MS, Pillai C, John KD, Birnbaum ER, Nortier FM (2013) Cross sections from proton irradiation of thorium at 800 MeV. Phys Rev C 88:014604

    Article  Google Scholar 

  10. Weidner JW, Mashnik SG, John KD, Ballard B, Birnbaum ER, Bitteker LJ, Couture A, Fassbender ME, Goff GS, Gritzo R, Hemez FM (2012) 225Ac and 223Ra production via 800 MeV proton irradiation of natural thorium targets. Appl Radiat Isot 70(11):2590–2595

    Article  CAS  PubMed  Google Scholar 

  11. Zhuikov BL, Kalmykov SN, Ermolaev SV, Aliev RA, Kokhanyuk VM, Matushko VL, Tananaev IG, Myasoedov BF (2011) Production of 225Ac and 223Ra by irradiation of Th with accelerated protons. Radiochemistry 53:73–80

    Article  CAS  Google Scholar 

  12. Sani AR (1970) Carrier-free separation of 228Ac from aged thorium nitrate. J Radioanal Nuc Chem 4:127–129

    Article  CAS  Google Scholar 

  13. Hyde EK (1960) The radiochemistry of thorium, National technical information service, US. Department of commerce, Springfield, VA, pp. 22161

  14. Tsoupko-Sitnikov V, Norseev Y, Khalkin V (1996) Generator of 225Ac. J Rad Nucl Chem 205:75–83

    Article  CAS  Google Scholar 

  15. Hu Y, Giret S, Meinusch R, Han J, Fontaine F-G, Kleitz F, Larivière D (2019) Selective separation and preconcentration of Th(IV) using organo-functionalized, hierarchically porous silica monoliths. J Mater 7:289–302

    CAS  Google Scholar 

  16. Brown MA (2020) Metal oxide sorbents for the separation of radium and actinium. Ind Eng Chem Res 59:20472–20477

    Article  CAS  Google Scholar 

  17. Coskun O (2016) Separation techniques: chromatography. North Clin Istanb 3:156–160

    PubMed  PubMed Central  Google Scholar 

  18. Radchenko V, Engle JW, Wilson JJ, Maassen JR, Nortier FM, Taylor WA, Birnbaum ER, Hudston LA, John KD, Fassbender ME (2015) Application of ion exchange and extraction chromatography to the separation of actinium from proton-irradiated thorium metal for analytical purposes. J Chromatogr A 1380:55–63

    Article  CAS  PubMed  Google Scholar 

  19. Fitzsimmons J, Abraham A, Catalano D, Younes A, Cutler CS, Medvedev D (2019) Evaluation of inorganic ion exchange materials for purification of 225Ac from thorium and radium radioisotopes. JMIRS 50(1):11

    Google Scholar 

  20. Ostapenko V, Vasiliev A, Lapshina E, Ermolaev S, Aliev R, Totskiy Y, Zhuikov B, Kalmykov S (2015) Extraction chromatographic behavior of actinium and REE on DGA, Ln and TRU resins in nitric acid solutions. J Radioanal Nucl Chem 306:707–711

    Article  CAS  Google Scholar 

  21. Kandwal P, Ansari SA, Mohapatra PK, Manchanda VK (2011) Separation of carrier free 90Y from 90Sr by hollow fiber supported liquid membrane containing Bis(2-ethylhexyl) phosphonic acid. Sep Sci Technol 46:904–911

    Article  CAS  Google Scholar 

  22. Naik PW, Jagasia P, Dhami PS, Achuthan PV, Tripathi SC, Munshi SK, Dey PK, Venkatesh M (2010) Separation of carrier-free 90Y from 90Sr by SLM technique using D2EHPA in N-Dodecane as carrier. Sep Sci Technol 45:554–561

    Article  CAS  Google Scholar 

  23. Eskandari NM, Milani SA, Sam A (2011) Extractive separation of Th(IV), U(VI), Ti(IV), La(III) and Fe(III) from Zarigan ore. J Radioanal Nucl Chem 288:677–683

    Article  CAS  Google Scholar 

  24. Xiong Y, Gao Y, Guo X, Wang Y, Su X, Sun X (2018) Water-stable metal-organic framework material with uncoordinated terpyridine site for selective Th(IV)/Ln(III) separation. ACS Sustain Chem Eng 7:3120–3126

    Article  Google Scholar 

  25. Principe F, Demopoulos GP (2004) Comparative study of iron(III) separation from zinc sulphate–sulphuric acid solutions using the organophosphorus extractants, OPAP and D2EHPA. Hydrometallurgy 74:93–102

    Article  CAS  Google Scholar 

  26. Ye Q, Li G, Deng B, Luo J, Rao M, Peng Z, Zhang Y, Jiang T (2019) Solvent extraction behavior of metal ions and selective separation Sc3+ in phosphoric acid medium using P204. Sep Purif 209:175–181

    Article  CAS  Google Scholar 

  27. Rizk HE, El-Din AMS, Afifi EME, Attallah MF (2021) Potential separation of zirconium and some lanthanides of the nuclear and industrial interest from zircon mineral using cation exchanger resin. J Dispers Sci Technol 43:1642–1651

    Article  Google Scholar 

  28. Dakroury GA, Allan KF, Attallah MF, El Afifi EM (2020) Sorption and separation performance of certain natural radionuclides of environmental interest using silica/olive pomace nanocomposites. J Radioanal Nucl Chem 325:625–639

    Article  CAS  Google Scholar 

  29. Moshin Q, Syed AN (1971) Synthesis and ion-exchange properties of thorium tungstate: separation of La3+ from Ba2+, Sr2+, Ca2+, nd Y3+ and of VO2+ from Fe3+ and Mn2+. J Chem Soc A: Inorg Phys Theor 139–143

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peizhuo Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Wang, J., Shao, K. et al. Two-step separation of Th, La and Ba using combined chromatographic columns. J Radioanal Nucl Chem 332, 1245–1252 (2023). https://doi.org/10.1007/s10967-023-08761-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08761-3

Keywords

Navigation