Skip to main content
Log in

Extraction-chromatographic behavior of Zr(IV) and Hf(IV) on TRU and LN resins in mixtures of HNO3 and HF

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The behavior of group-4 homologs Zr and Hf on extraction-chromatographic sorbents LN resin and TRU resin in mixtures of HF and HNO3 is considered. Distribution coefficients of the elements in the mixtures of 5·10−4 M–1 M HF and 0.01 M–5 M HNO3 are determined. Strong retention of both elements was found on LN resin in the range of concentrations c(HF) ≤ 0.01 M for all concentrations of HNO3. Retention tends to gradually disappear while increasing c(HF) to 0.5 M. On TRU resin retention is observed only in solutions with c(HNO3) ≥ 2 M and c(HF) ≤ 0.01 M. The possibility of separating Zr(IV) and Hf(IV) on LN resin is illustrated in two different acid mixtures, whereas their separation on TRU resin under the conditions studied in this work is difficult. The results obtained can be used to isolate analytes from multicomponent mixtures during analytical tasks, as well as to separate them from each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wu M, He H, Xu F et al (2019) High-efficient and selective extraction of Hf over Zr with DIBK-P350 synergistic extraction system. Sep Purif Technol 212:255–261. https://doi.org/10.1016/j.seppur.2018.11.043

    Article  CAS  Google Scholar 

  2. Xu L, Xiao Y, Van Sandwijk A et al (2015) Production of nuclear grade zirconium: a review. J Nucl Mater 466:21–28. https://doi.org/10.1016/j.jnucmat.2015.07.010

    Article  CAS  Google Scholar 

  3. Wang Q, Tsunoda K, Akaiwa H (1997) Separation of zirconium(IV) and hafnium(IV) by extraction chromatography using di(1-methylheptyl) methylphosphonate as a stationary phase. Anal Sci 13:27–31. https://doi.org/10.2116/analsci.13.27

    Article  Google Scholar 

  4. Yang XJ, Pin C, Fane AC (1999) Separation of hafnium from zirconium by extraction chromatography with liquid anionic exchangers. J Chromatogr Sci 37:171–179. https://doi.org/10.1093/chromsci/37.5.171

    Article  CAS  Google Scholar 

  5. Alfonso MC, Bennett ME, Folden CM (2016) Extraction chromatography of the Rf homologs, Zr and Hf, using TEVA and UTEVA resins in HCl, HNO3, and H2SO4 media. J Radioanal Nucl Chem 307:1529–1536. https://doi.org/10.1007/s10967-015-4256-5

    Article  CAS  Google Scholar 

  6. Hurst FJ (1983) Separation of hafnium from zirconium in sulfuric acid solutions using pressurized ion exchange. Hydrometallurgy 10:1–10. https://doi.org/10.1016/0304-386X(83)90072-5

    Article  CAS  Google Scholar 

  7. Felipe ECB, Ladeira ACQ (2018) Separation of zirconium from hafnium by ion exchange. Sep Sci Technol 53:330–336. https://doi.org/10.1080/01496395.2017.1385624

    Article  CAS  Google Scholar 

  8. Huré J, Rastoix M, Saint-James R (1961) Données relatives aux équilibres chimiques régissant la séparation zirconium—hafnium. Anal Chim Acta 25:118–128. https://doi.org/10.1016/0003-2670(61)80188-8

    Article  Google Scholar 

  9. Yadollahi A, Saberyan K, Torab-Mostaedi M et al (2018) Solvent extraction separation of zirconium and hafnium from nitric acid solutions using mixture of Cyanex-272 and TBP. Radiochim Acta 106:675–684. https://doi.org/10.1515/ract-2017-2897

    Article  CAS  Google Scholar 

  10. Meerholz K, van der Westhuizen DJ, Krieg HM (2017) Automation of membrane based solvent extraction unit for Zr and Hf separation. Sep Purif Technol 179:204–214. https://doi.org/10.1016/j.seppur.2017.01.064

    Article  CAS  Google Scholar 

  11. Conradie EW, Van Der Westhuizen DJ, Nel T, Krieg HM (2018) The hafnium-selective extraction from a zirconium (hafnium) heptafluoride ammonium solution using organophosphorus-based extractants. Solvent Extr Ion Exch 00:1–16. https://doi.org/10.1080/07366299.2018.1510812

    Article  CAS  Google Scholar 

  12. Taylor P, Banda R, Lee MS et al (2015) Solvent extraction for the separation of Zr and Hf from aqueous solutions Solvent. Sep Purif Rev. https://doi.org/10.1080/15422119.2014.920876

    Article  Google Scholar 

  13. Shinjo R, Ginoza Y, Meshesha D (2010) Improved method for Hf separation from silicate rocks for isotopic analysis using Ln-spec resin column. J Mineral Petrol Sci 105:297–302. https://doi.org/10.2465/jmps.091011

    Article  CAS  Google Scholar 

  14. Nebel-Jacobsen Y, Scherer EE, Münker C, Mezger K (2005) Separation of U, Pb, Lu, and Hf from single zircons for combined U-Pb dating and Hf isotope measurements by TIMS and MC-ICPMS. Chem Geol 220:105–120. https://doi.org/10.1016/j.chemgeo.2005.03.009

    Article  CAS  Google Scholar 

  15. Snow MS, Finck MR, Carney KP, Morrison SS (2017) Extraction chromatographic separations of tantalum and tungsten from hafnium and complex matrix constituents. J Chromatogr A 1484:1–6. https://doi.org/10.1016/j.chroma.2017.01.019

    Article  CAS  PubMed  Google Scholar 

  16. Gautier C, Coppo M, Caussignac C et al (2013) Zr and U determination at trace level in simulated deep groundwater by QICP-MS using extraction chromatography. Talanta 106:1–7. https://doi.org/10.1016/j.talanta.2012.12.019

    Article  CAS  PubMed  Google Scholar 

  17. Kazakov AG, Aliev RA, Ostapenko VS et al (2018) Separation of 89Zr from irradiated yttrium targets by extraction chromatography. J Radioanal Nucl Chem 317:605–611. https://doi.org/10.1007/s10967-018-5888-z

    Article  CAS  Google Scholar 

  18. Peppard DF, Ferraro JR (1959) The preparation and infra-red absorption spectra of several complexes of bis-(2-ethylhexyl)-phosphoric acid. J Inorg Nucl Chem 10:275–288. https://doi.org/10.1016/0022-1902(59)80121-4

    Article  CAS  Google Scholar 

  19. Reddy LK, Reddy BV, Harikrishna K, Venugopal Chetty K (1994) Solvent extraction of Hf(IV) from mixed electrolyte solutions into di-2-ethylhexylphosphoric acid (HDEHP). J Radioanal Nucl Chem Artic 178:173–178. https://doi.org/10.1007/BF02068668

    Article  CAS  Google Scholar 

  20. Strub E, Kratz JV, Kronenberg A et al (2000) Fluoride complexation of rutherfordium (Rf, element 104). Radiochim Acta 88:265–271. https://doi.org/10.1524/ract.2000.88.5.265

    Article  CAS  Google Scholar 

  21. Sase S, Goto K (2011) Formation of a unique fluorosilen-KF complex bearing bulky substituents. Chem Lett 805:196–197. https://doi.org/10.1246/cl.2011.196

    Article  CAS  Google Scholar 

  22. Toyoshima A, Haba H, Tsukada K et al (2008) Hexafluoro complex of rutherfordium in mixed HF/HNO3 solutions. Radiochim Acta 96:125–134. https://doi.org/10.1524/ract.2008.1474

    Article  CAS  Google Scholar 

  23. Yokoyama A, Kitayama Y, Fukuda Y et al (2019) Extraction behavior of rutherfordium as a cationic fluoride complex with a TTA chelate extractant from HF/HNO3 acidic solutions. Radiochim Acta 107:27–32. https://doi.org/10.1515/ract-2018-2949

    Article  CAS  Google Scholar 

  24. Horwitz EP, Bloomquist CAA (1975) Chemical separations for super-heavy element searches in irradiated uranium targets. J Inorg Nucl Chem 37:425–434. https://doi.org/10.1016/0022-1902(75)80350-2

    Article  CAS  Google Scholar 

  25. Münker C, Weyer S, Scherer E, Mezger K (2001) Seperation of high field strength elements (Nb, Ta, Zr, Hf) and Lu from rock samples for MC-IPMS measurements. Geochem Geophys Geosyst. https://doi.org/10.1029/2001gc000183

    Article  Google Scholar 

  26. Cheng T, Nebel O, Sossi PA, Chen F (2014) Refined separation of combined Fe-Hf from rock matrices for isotope analyses using AG-MP-1 M and Ln-Spec chromatographic extraction resins. MethodsX 1:144–150. https://doi.org/10.1016/j.mex.2014.08.004

    Article  PubMed  PubMed Central  Google Scholar 

  27. Levitt AE, Freund H (1956) Solvent extraction of zirconium with tributyl phosphate. J Am Chem Soc 78:1545–1549. https://doi.org/10.1021/ja01589a010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially (meaning all researches connected with zirconium) supported by Russian Foundation for Basic Research (RFBR) according to research project № 18-33-00649. We also want to thank Nikolai V. Shikov from Profbusinessgroup and Maxim I. Lenkov from NRC “Kurchatov Institute” for their great contribution to the organization of experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taisya Yu. Ekatova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekatova, T.Y., Kazakov, A.G. Extraction-chromatographic behavior of Zr(IV) and Hf(IV) on TRU and LN resins in mixtures of HNO3 and HF. J Radioanal Nucl Chem 321, 557–563 (2019). https://doi.org/10.1007/s10967-019-06601-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06601-x

Keywords

Navigation