Skip to main content
Log in

Synthesis, structures, and characterizations of four uranyl coordination polymers constructed by mixed-ligand strategy

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Uranyl coordination polymers have caught more and more attention due to their rich topological structures and potential practical applications in nuclear waste processing and management. In this work, four novel uranyl coordination polymers have been successfully synthesized by the utilization of a semirigid ligand and uranyl nitrate under hydrothermal reactions through the introducing of different kinds of auxiliary ligands (NaCl, oxalate acid, succinic acid). Therein, the powder X-ray diffraction, Infrared spectroscopy and luminescence properties of compounds 3 and 4 are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cui YJ, Li B, He HJ, Zhou W, Chen BL, Qian GD (2016) Metal-organic frameworks as platforms for functional materials. Acc Chem Res 49:483–493

    CAS  PubMed  Google Scholar 

  2. Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT (2012) Metal-organic framework materials as chemical sensors. Chem Rev 112:1105–1125

    CAS  PubMed  Google Scholar 

  3. Gao WY, Chrzanowski M, Ma SQ (2014) Metal-metalloporphyrin frameworks: a resurging class of functional materials. Chem Soc Rev 43:5841–5866

    CAS  PubMed  Google Scholar 

  4. Huang YB, Liang J, Wang XS, Cao R (2017) Multifunctional metal-organic framework catalysts: synergistic catalysis and tandem reactions. Chem Soc Rev 46:126–157

    CAS  PubMed  Google Scholar 

  5. Yang QH, Xu Q, Jiang HL (2017) Metal-organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chem Soc Rev 46:4774–4808

    CAS  PubMed  Google Scholar 

  6. Cai XC, Xie ZX, Li DD, Kassymova M, Zang SQ, Jiang HL (2020) Nano-sized metal-organic frameworks: synthesis and applications. Coord Chem Rev 417:213366

    CAS  Google Scholar 

  7. Sun JK, Yang XD, Yang GY, Zhang J (2019) Bipyridinium derivative-based coordination polymers: from synthesis to materials applications. Coord Chem Rev 378:533–560

    CAS  Google Scholar 

  8. Ding ML, Flaig RW, Jiang HL, Yaghi OM (2019) Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chem Soc Rev 48:2783–2828

    CAS  PubMed  Google Scholar 

  9. Wang C, Zhang T, Lin WB (2012) Rational synthesis of noncentrosymmetric metal-organic frameworks for second-order nonlinear optics. Chem Rev 112:1084–1104

    CAS  PubMed  Google Scholar 

  10. Su J, Xu N, Murase R, Yang ZM, D’Alessandro DM, Zuo JL, Zhu J (2021) Persistent radical tetrathiafulvalene-based 2D metal-organic frameworks and their application in efficient photothermal conversion. Angew Chem Int Ed 60:4789–4795

    CAS  Google Scholar 

  11. Tang SX, Ruan HP, Feng R, Zhao Y, Tan GW, Zhang L, Wang XP (2019) Tunable reduction of 2,4,6-tri(4-pyridyl)-1,3,5-triazine: from radical anion to diradical dianion to radical metal-organic framework. Angew Chem Int Ed 58:18224–18229

    CAS  Google Scholar 

  12. Cai LZ, Yao ZZ, Lin SJ, Wang MS, Guo GC (2021) Photoinduced electron-transfer (PIET) strategy for selective adsorption of CO2 over C2H2 in a MOF. Angew Chem Int Edit 60:18223–18230

    CAS  Google Scholar 

  13. Yu XQ, Sun C, Liu BW, Wang MS, Guo GC (2020) Directed self-assembly of viologen-based 2D semiconductors with intrinsic UV-SWIR photoresponse after photo/thermo activation. Nat Commun 11:1179

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lu BZ, Chen YF, Li PY, Wang B, Mullen K, Yin MZ (2019) Stable radical anions generated from a porous perylenediimide metal-organic framework for boosting near-infrared photothermal conversion. Nat Commun 10:767

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Fang W, Douair I, Hauser A, Li K, Zhao Y, Roesky PW, Wang S, Maron L, Zhu C (2022) Uranium(III)–phosphorus(III) synergistic activation of white phosphorus and arsenic. CCS Chem 4:2630–2638

    CAS  Google Scholar 

  16. Zeng X, Nyquist Y, Zhang Q, Butt H-J, Wu S (2022) Light-induced assembly of colloidal nanoparticles based on photo-controlled metal–ligand coordination. Supramol Mater 1:100004

    Google Scholar 

  17. Loiseau T, Mihalcea I, Henry N, Volkringer C (2014) The crystal chemistry of uranium carboxylates. Coord Chem Rev 266:69–109

    Google Scholar 

  18. Yang WT, Parker TG, Sun ZM (2015) Structural chemistry of uranium phosphonates. Coord Chem Rev 303:86–109

    CAS  Google Scholar 

  19. Cheng LW, Liang CY, Liu W, Wang YX, Chen B, Zhang HL, Wang YL, Chai ZF, Wang S (2020) Three-dimensional polycatenation of a uranium-based metal-organic cage: structural complexity and radiation detection. J Am Chem Soc 142:16218–16222

    CAS  PubMed  Google Scholar 

  20. Vargas-Zuniga GI, Boreen MA, Mangel DN, Arnold J, Sessler JL (2022) Porphyrinoid actinide complexes. Chem Soc Rev 51:3735–3758

    CAS  PubMed  Google Scholar 

  21. Lv K, Fichter S, Gu M, Marz J, Schmidt M (2021) An updated status and trends in actinide metal-organic frameworks (An-MOFs): from synthesis to application. Coordin Chem Rev 446:214011

    CAS  Google Scholar 

  22. Martin CR, Leith GA, Shustova NB (2021) Beyond structural motifs: the frontier of actinide-containing metal-organic frameworks. Chem Sci 12:7214–7230

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kong X-H, Wu Q-Y, Mei L, Zeng L-W, Huang Z-W, Yu J-P, Nie C-M, Gibson JK, Chai Z-F, Hu K-Q, Shi W-Q (2023) Silver ion-induced formation of unprecedented thorium nonamer clusters via lacuna-construction strategy. CCS Chem. https://doi.org/10.31635/ccschem.31022.202202054

    Article  Google Scholar 

  24. Wang Y, Hu S-X, Cheng L, Liang C, Yin X, Zhang H, Li A, Sheng D, Diwu J, Wang X, Li J, Chai Z, Wang S (2020) Stabilization of plutonium(V) within a crown ether inclusion complex. CCS Chem 2:425–431

    CAS  Google Scholar 

  25. Thuery P, Harrowfield J (2017) Coordination polymers and cage-containing frameworks in uranyl ion complexes with rac- and (1R,2R)-trans-1,2-cyclohexanedicarboxylates: consequences of chirality. Inorg Chem 56:1455–1469

    CAS  PubMed  Google Scholar 

  26. Andreev G, Budantseva N, Fedoseev A (2020) Interaction with simple monopyridinecarboxylic ligands revealing unexpected structural types of uranyl halides. Inorg Chem 59:15583–15586

    CAS  PubMed  Google Scholar 

  27. Thuery P, Harrowfield J (2017) Variations on the honeycomb topology: from triangular-and square-grooved networks to tubular assemblies in uranyl tricarballylate complexes. Cryst Growth Des 17:963–966

    CAS  Google Scholar 

  28. Wang YL, Liu ZY, Li YX, Bai ZL, Liu W, Wang YX, Xu XM, Xiao CL, Sheng DP, Juan DW, Su J, Chai ZF, Albrecht-Schmitt TE, Wang S (2015) Umbellate distortions of the uranyl coordination environment result in a stable and porous polycatenated framework that can effectively remove cesium from aqueous solutions. J Am Chem Soc 137:6144–6147

    CAS  PubMed  Google Scholar 

  29. Andrews MB, Cahill CL (2013) Uranyl bearing hybrid materials: synthesis, speciation, and solid-state structures. Chem Rev 113:1121–1136

    CAS  PubMed  Google Scholar 

  30. Liu C, Chen FY, Tian HR, Ai J, Yang WT, Pan QJ, Sun ZM (2017) Interpenetrated uranyl-organic frameworks with bor and pts topology: structure, spectroscopy, and computation. Inorg Chem 56:14147–14156

    CAS  PubMed  Google Scholar 

  31. Surbella RG, Ducati LC, Autschbach J, Deifel NP, Cahill CL (2018) Thermochromic uranyl isothiocyanates: influencing charge transfer bands with supramolecular structure. Inorg Chem 57:2455–2471

    CAS  PubMed  Google Scholar 

  32. Mei L, Ren P, Wu QY, Ke YB, Geng JS, Liu K, Xing XQ, Huang ZW, Hu KQ, Liu YL, Yuan LY, Mo G, Wu ZH, Gibson JK, Chai ZF, Shi WQ (2020) Actinide separation inspired by self-assembled metal-polyphenolic nanocages. J Am Chem Soc 142:16538–16545

    CAS  PubMed  Google Scholar 

  33. Zhang ZH, Senchyk GA, Liu Y, Spano-Franco T, Szymanowski JES, Burns PC (2017) Porous uranium diphosphonate frameworks with trinuclear units templated by organic ammonium hydrolyzed from amine solvents. Inorg Chem 56:13249–13256

    CAS  PubMed  Google Scholar 

  34. Falaise C, Charles JS, Volkringer C, Loiseau T (2015) Thorium terephthalates coordination polymers synthesized in solvothermal DMF/H2O system. Inorg Chem 54:2235–2242

    CAS  PubMed  Google Scholar 

  35. Wang KX, Chen JS (2011) Extended structures and physicochemical properties of uranyl-organic compounds. Acc Chem Res 44:531–540

    CAS  PubMed  Google Scholar 

  36. Zhang YJ, Karatchevtseva I, Bhadbhade M, Tran TT, Aharonovich I, Fanna DJ, Shepherd ND, Lu K, Li F, Lumpkin GR (2016) Solvothermal synthesis of uranium(VI) phases with aromatic carboxylate ligands: a dinuclear complex with 4-hydroxybenzoic acid and a 3D framework with terephthalic acid. J Solid State Chem 234:22–28

    CAS  Google Scholar 

  37. Zhai FW, Li H, Gui DX, Xia CQ, Chai ZF, Wang S (2022) A semiconducting uranium-organic framework based on a tetrathiafulvalene derivative. Dalton Trans 51:16448–16452

    CAS  PubMed  Google Scholar 

  38. Li P, Vermeulen NA, Gong XR, Malliakas CD, Stoddart JF, Hupp JT, Farha OK (2016) Design and synthesis of a water-stable anionic uranium-based metal-organic framework (MOF) with ultra large pores. Angew Chem Int Ed 55:10358–10362

    CAS  Google Scholar 

  39. Gu DX, Yang WT, Chen HP, Yang YH, Qin XD, Chen L, Wang S, Pan QH (2021) A stable mixed-valent uranium(v, vi) organic framework as a fluorescence thermometer. Inorg Chem Front 8:3514–3521

    CAS  Google Scholar 

  40. Wang YX, Wang YM, Dai X, Liu W, Yin XM, Chen L, Zhai FW, Juan DW, Chao Z, Zhou RH, Chai ZF, Liu N, Wang S (2019) Inorganic X-ray scintillators based on a previously unnoticed but intrinsically advantageous metal center. Inorg Chem 58:2807–2812

    CAS  PubMed  Google Scholar 

  41. Hu KQ, Huang ZW, Zhang ZH, Mei L, Qian BB, Yu JP, Chai ZF, Shi WQ (2018) Actinide-based porphyrinic MOF as a dehydrogenation catalyst. Chem Eur J 24:16766–16769

    CAS  PubMed  Google Scholar 

  42. Huang ZW, Hu KQ, Mei L, Wang CZ, Chen YM, Wu WS, Chai ZF, Shi WQ (2021) Potassium ions induced framework interpenetration for enhancing the stability of uranium-based porphyrin MOF with visible-light-driven photocatalytic activity. Inorg Chem 60:651–659

    CAS  PubMed  Google Scholar 

  43. Adelani PO, Burns PC (2012) One-dimensional uranyl-2,2′-bipyridine coordination polymer with cation-cation interactions: (UO2)2(2,2′-bpy)(CH3CO2)(O)(OH). Inorg Chem 51:11177–11183

    CAS  PubMed  Google Scholar 

  44. Kong XH, Hu KQ, Wu QY, Mei L, Yu JP, Chai ZF, Nie CM, Shi WQ (2019) In situ nitroso formation induced structural diversity of uranyl coordination polymers. Inorg Chem Front 6:775–785

    CAS  Google Scholar 

  45. Zhang XL, Hu KQ, Mei L, Zhao YB, Wang YT, Chai ZF, Shi WQ (2018) Semirigid tripodal ligand based uranyl coordination polymer isomers featuring 2D honeycomb nets. Inorg Chem 57:4492–4501

    CAS  PubMed  Google Scholar 

  46. Brager DM, Marwitz AC, Cahill CL (2022) A spectroscopic, structural, and computational study of Ag-oxo interactions in Ag+/UO22+ complexes. Dalton Trans 51:10095–10120

    CAS  PubMed  Google Scholar 

  47. Gomez GE, Ridenour JA, Byrne NM, Sheychenko AP, Cahill CL (2019) Novel heterometallic uranyl-transition metal materials: structure, topology, and solid state photoluminescence properties. Inorg Chem 58:7243–7254

    CAS  PubMed  Google Scholar 

  48. Cantos PM, Pope SJA, Cahill CL (2020) An exploration of homo- and heterometallic UO22+ hybrid materials containing chelidamic acid: synthesis, structure, and luminescence studies. Cryst Eng Comm 22:4952–4952

    CAS  Google Scholar 

  49. Thuery P, Harrowfield J (2022) Ni(2,2’:6’,2’’-terpyridine-4’-carboxylate)2 zwitterions and carboxylate polyanions in mixed-ligand uranyl ion complexes with a wide range of topologies. Inorg Chem 61:9725–9745

    CAS  PubMed  Google Scholar 

  50. An SW, Mei L, Hu KQ, Xia CQ, Chai ZF, Shi WQ (2016) The templated synthesis of a unique type of tetra-nuclear uranyl-mediated two-fold interpenetrating uranyl-organic framework. Chem Commun 52:1641–1644

    CAS  Google Scholar 

  51. Hu KQ, Zhu LZ, Wang CZ, Mei L, Liu YH, Gao ZQ, Chai ZF, Shi WQ (2016) Novel uranyl coordination polymers based on quinoline-containing dicarboxylate by altering auxiliary ligands: from 1D chain to 3D framework. Cryst Growth Des 16:4886–4896

    CAS  Google Scholar 

  52. Liu C, Yang WT, Qu N, Li LJ, Pan QJ, Sun ZM (2017) Construction of uranyl organic hybrids by phosphonate and in situ generated carboxyphosphonate ligands. Inorg Chem 56:1669–1678

    CAS  PubMed  Google Scholar 

  53. Horike S, Hasegawa S, Tanaka D, Higuchi M, Kitagawa S (2008) Kagome type extra-large microporous solid based on a paddle-wheel Cu2+ dimer. Chem Commun 37:4436–4438

    Google Scholar 

  54. Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Macromol Crystallogr Part A 276:307–326

    CAS  Google Scholar 

  55. Pacchioni M, Bega A, Fabretti AC, Rovai D, Cornia A (2002) Post-synthetic isotopic labeling of an azamacrocyclic ligand. Tetrahedron Lett 43:771–774

    CAS  Google Scholar 

  56. Carter KP, Kalaj M, Cahill CL (2016) Probing the influence of N-donor capping ligands on supramolecular assembly in molecular uranyl materials. Eur J Inorg Chem 2016:126–137

    CAS  Google Scholar 

  57. Yang W, Dang S, Wang H, Tian T, Pan QJ, Sun ZM (2013) Synthesis, structures, and properties of uranyl hybrids constructed by a variety of mono- and polycarboxylic acids. Inorg Chem 52:12394–12402

    CAS  PubMed  Google Scholar 

  58. Lhoste J, Henry N, Roussel P, Loiseau T, Abraham F (2011) An uranyl citrate coordination polymer with a 3D open-framework involving uranyl cation-cation interactions. Dalton Trans 40:2422–2424

    CAS  PubMed  Google Scholar 

  59. Liang LL, Zhang RL, Weng NS, Zhao JS, Liu CY (2016) Synthesis, structures, and photoluminescent properties of two uranium complexes constructed by a flexible zwitterion ligand. Inorg Chem Commun 64:56–58

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the key project of the National Natural Science Foundation of China (Grant No. U1867221), the youth project of Natural Science Foundation of Hunan Province (Grant No. 2021JJ40470) and the outstanding youth project of Scientific research project of the Education Department of Hunan Province (Grant No. 19B491).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-qing Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2528 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Sh., Wang, Hq. Synthesis, structures, and characterizations of four uranyl coordination polymers constructed by mixed-ligand strategy. J Radioanal Nucl Chem 332, 1367–1376 (2023). https://doi.org/10.1007/s10967-022-08758-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08758-4

Keywords

Navigation